
 
 
 
 
 
 
 
 
 
 

CHAPTER 5 
 

ADAPTIVE BEAMFORMING 
 
 
 
 

Adaptive Beamforming is a technique in which an array of antennas is exploited to 

achieve maximum reception in a specified direction by estimating the signal arrival from a 

desired direction (in the presence of noise) while signals of the same frequency from other 

directions are rejected. This is achieved by varying the weights of each of the sensors (antennas) 

used in the array. It basically uses the idea that, though the signals emanating from different 

transmitters occupy the same frequency channel, they still arrive from different directions. This 

spatial separation is exploited to separate the desired signal from the interfering signals. In 

adaptive beamforming the optimum weights are iteratively computed using complex algorithms 

based upon different criteria. 

 
Beamforming is generally accomplished by phasing the feed to each element of an array 

so that signals received or transmitted from all elements will be in phase in a particular direction. 

The phases (the interelement phase) and usually amplitudes are adjusted to optimize the received 

signal. The array factor for an N-element equally spaced linear array is given, 
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Note that variable amplitude excitation is used. 
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The interelement phase shift is given by, 
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    0φ  is the desired beam direction. At wavelength 0λ the phase shift corresponds to a time delay 

that will steer the beam to 0φ . 

 
 

5.1 Adaptive beamforming problem setup 

 
To illustrate different beamforming aspects, let us consider an adaptive beamforming 

configuration shown below in figure 5.1. 
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signal  that approximates the desired signal, and previous weights. The reference signal is 

approximated to the desired signal using a training sequence or a spreading code, which is 

known at the receiver. The format of the reference signal varies and depends upon the system 

where adaptive beamforming is implemented. The reference signal usually has a good 

correlation with the desired signal and the degree of correlation influences the accuracy and the 

convergence of the algorithm. 
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The array output is given by 

)()( txwty H=              (5.3) 

Where  denotes the complex conjugate transpose of the weight vector w. 

 
In order to compute the optimum weights, the array response vector from the sampled 

data of the array output has to be known. The array response vector is a function of the incident 

angle as well as the frequency. The baseband received signal at the N-th antenna is a sum of 

phase-shifted and attenuated versions of the original signal .  )(tsi
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The consists of both the desired and the interfering signals. si

)( ik θτ  is the delay, is the carrier frequency. cf
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 Now, 
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So that, 

)()()( tSAtx θ=                 (5.8) 
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With noise, 

)()()()( tntSAtx += θ              (5.9) 

 
)(θa is referred to as the array propagation vector or the steering vector for a particular 

value of θ . 

 
The beamformer response can be expressed in the vector form as, 

),(),( ωθωθ awr H=           (5.10) 

This includes the possible dependency of )(θa on ω  as well. 

 
To have a better understanding let us re-write in equation 5.9 by separating the 

desired signal from the interfering signals. Let denote the desired signal arriving at an angle 

of incidence

)(tx

)(ts

0θ at the array and the denotes the number of undesired interfering signals 

arriving at angles of incidence 

)(tui uN

iθ . It must be noted that, in this case, the directions of arrival are 

known a priori using a direction of arrival (DOA) algorithm. 

 
The output of the antenna array can now be re-written as; )(tx
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where, 

)( ia θ is the array propagation vector of the i interfering signal. th

)( 0θa is the array propagation vector of the desired signal. 

 
Therefore, having the above information, adaptive algorithms are required to 

estimate s from while minimizing the error between the estimate  and the original 

signal .  

)(t

)t

)(tx )(ˆ ts

(s

 
Let represent a signal that is closely correlated to the original desired signal s . is 

referred to as the reference signal, the mean square error (MSE)  between the beamformer 

output and the reference signal can now be computed as follows; 
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22 )]()([)( txwtdt H−= ∗ε          (5.12) 

 
After taking an expectation on both sides of the equation we get, 

})]()({[)}({ 22 txwtdEtE H−= ∗ε         (5.13) 

 
RwwrwtdEtE HH +−= 2)}({[)}({ 22ε        (5.14) 

 
where is the cross-correlation matrix between the desired signal and 

the received signal and is the auto-correlation matrix of the received signal also 

known as the covariance matrix. The minimum MSE can be obtained by setting the gradient 

vector of the above equation with respect to equal to zero, i.e. 
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Therefore the optimum solution for the weight is given by optw

rRwopt
1−=            (5.16) 

This equation is referred to as the optimum Weiner solution. 

 
5.2 Traditional adaptive beamforming approaches 

 
The following discussion explains various beamforming approaches and adaptive 

algorithms in a brief manner.  

 
5.2.1 Side lobe cancellers 

 
This simple beamformer shown below consists of a main antenna and one or more 

auxiliary antennas.  The main antenna is highly directional and is pointed in the desired signal 

direction. It is assumed that the main antenna receives both the desired signal and the interfering 

signals through its sidelobes. The auxiliary antenna primarily receives the interfering signals 

since it has very low gain in the direction of the desired signal. The auxiliary array weights are 

 45



chosen such that they cancel the interfering signals that are present in the sidelobes of the main 

array response. 
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Figure 5.2 Sidelobe canceller beamforming 

 
 
 
 

If the responses to the interferers of both the channels are similar then the overall 

response of the system will be zero, which can result in white noise. Therefore the weights are 

chosen to trade off interference suppression for white noise gain by minimizing the expected 

value of the total output power. Therefore the criteria can be expressed mathematically as 

follows; 

    {
2

{ a
H
am

w
xwyE

a

−min           (5.17) 

The optimum weights which correspond to the sidelobe canceller’s adaptive component were 

found to be 

aw
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}{ H
aaa xxER =  is the auxiliary array correlation matrix and the vector  is the cross correlation 

between auxiliary array elements and the main array. This technique is simple in operation but it 

is mainly effective when the desired signal is weaker compared to the interfering signals since 

the stronger the desired signal gets (relatively), its contribution to the total output power 

increases and in turn increases the cancellation percentage.  It can even cause the cancellation of 

the desired signal. 

mar

 
5.2.2 Linearly Constrained Minimum Variance (LCMV) 

  
Most of the beamforming techniques discussed require some knowledge of the desired 

signal strength and also the reference signal. These limitations can be overcome through the 

application of linear constraints to the weight vector. LCMV spatial filters are beamformers that 

choose their weights so as to minimize the filter's output variance or power subject to constraints. 

This criterion together with other constraints ensure signal preservation at the location of interest 

while minimizing the variance effects of signals originating from other locations. 

 
In LCMV beamforming the expected value of the array output power is minimized, i.e. 

 wRwyE x
H=}{ 2  is minimized subject to ;       (5.19) fwC H =

 
where  denotes the covariance matrix of , xR )(tx C  is the constraint matrix which 

contains K column vectors and  is the response vector which contains K scalar constraint 

values. The solution to the above equation using Lagrange multipliers gives the optimum weights 

as 

f
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This beam forming method is flexible and does not require reference signals to compute 

optimum weights but it requires computation of a constrained weight vector .  C
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5.2.3 Null steering beamforming 

  
Unlike other algorithms null steering algorithms do not look for the signal presence and 

then enhance it, instead they examine where nulls are located or the desired signal is not present 

and minimize the output signal power. One technique based on this approach is to minimize the 

mean squared value of the array output while constraining the norm of the weight vector to be 

unity. 
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The matrix A, a positive-definite symmetric matrix, serves to balance the relative 

importance of portions of the weight vectors over others. The optimum weight vector must 

satisfy the following equation; 

                   AwRw λ−=            (5.22) 

 
5.2.4 Sample Matrix Inversion (SMI) Algorithm: 

 
In this algorithm the weights are chosen such that the mean-square error between the 

beamformer output and the reference signal is minimized. The mean square error is given by  
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)(tx  is the array output at time t ; ) is the reference signal; is the 

signal covariance matrix. 

(tr )]()([ txtxER H
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)]t()([ xtrERr = , defines the covariance between the reference signal 

and the data signal. The weight vector, for which the above equation becomes minimum, is 

obtained by setting its gradient vector with respect to , to zero, i.e. w
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The optimum weights can be easily obtained by direct inversion of the covariance matrix. 

This algorithm requires a reference signal and is computational intensive. It is definitely faster 

than LMS. 

 
5.2.5 Constant Modulus Algorithm (Blind adaptive beamforming) 

 
The configuration of CMA adaptive beamforming is the same as that of the SMI system 

discussed above except that it requires no reference signal. It is a gradient-based algorithm that 

works on the theory that the existence of interference causes changes in the amplitude of the 

transmitted signal, which otherwise has a constant envelope (modulus). The weight updates are 

obtained by minimizing the positive mean cost function; 
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The weight updates are given by, 

))(()()1( nwgnwnw µ−=+          (5.27) 

 
)(ny  is the array output after the nth iteration, is the amplitude of the modulus of the 

desired signal in the absence of interference and denotes an estimate of the cost 

function. The CMA algorithm may not always converge. This problem is overcome by having 

additional information about the desired signal. 
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5.2.6 Least Mean Squares (LMS): 

 
This algorithm like the preceding one requires a reference signal and it computes the 

weight vector using the equation 

)]()()()[()()1( * nwnxndnxnwnw H−+=+ µ        (5.28) 

 
w(n+1) denotes weight computed at (n+1)th iteration.  

Where µ  is the gain constant that controls the rate of adaptation, i.e. how fast and how 

close the estimated weights approach the optimal weights. The convergence of the algorithm 

depends upon eigenvalues of R (the array correlation matrix), the array correlation matrix. In a 
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digital system, the reference signal is obtained by periodically transmitting a training sequence 

that is known to a receiver, or using the spread code in the case of a direct-sequence CDMA 

system. The LMS algorithm described here is a basic structure for most dynamic adaptive 

algorithms. This method requires information about a reference signal. 

 
5.2.7 Recursive Least Square algorithm (RLS) 

 

As discussed above, the convergence of the LMS algorithm depends upon the 

eigenvalues of R. If R leads to a large spread, the algorithm converges slowly. This problem is 

solved here by replacing the step gradient sizeµ  with a gain matrix  at the nth iteration, 

producing the following weight equation, 

)(1 nR−

))1(()()()1()( *1 −−−= − nwnxnRnwnw ε        (5.29) 

 
where is given by )(nR
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where, ,0δ  a real scalar smaller than but close to 1, is used for exponential weighting of 

past data. ε  is the error signal. The RLS algorithm does not require any matrix inversion 

computations as the inverse correlation matrix is computed directly. It requires reference signal 

and correlation matrix information. It is almost ten times faster compared to LMS. 

 
5.3 Direction of Arrival (DOA) Algorithms 

 
For the beamformer to steer the radiation in a particular direction and to place the nulls in 

the interfering directions the direction of arrival has to be known beforehand. The Direction of 

arrival algorithms does exactly the same; they work on the signal received at the output of the 

array and computes the direction of arrivals of all the incoming signals. Once the angle 

information is known it is fed into the beamforming network to compute the complex weight 

vectors required for beam steering. Some of the DOA algorithms are discussed in the following 

sections. 
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Figure 5.3 Beamforming setup with Direction of arrival estimation 

 
 
 
 
5.3.1 MUSIC (MUltiple SIgnal Classification) 

 
Consider a N-element linear array that detects M signals impinging on it whose directions 

of arrival need to be known. From the previous discussion we know that the received signals at 

the output of the array have the following form. 

 
)()()()( tntSAtx += θ          (5.32) 

or in matrix notation it can be represented as, 

 
nASX +=            (5.33) 

 
where S is the signal vector, A is the array propagation vector and n is the noise vector 

with zero mean and variance. 2σ

 
The covariance matrix is given by, NN ×

          (5.34) }{}{}{ ∗∗∗∗ +== nnEASSAEXXERx

IAAP 2σ+= ∗          (5.35) 
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where             (5.36) }{ ∗= SSEP

IRAAP x
2σ−=∗           (5.37) 

 
when the number of signals M is less than N then AAP∗ is singular and has a rank less than N. 

The eigenvalues of can be found by, xR

02 =−=∗ IRAAP x σ          (5.38) 

The eigenvectors of  must satisfy, xR
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0)( 2 =− ix eIR σ           (5.40) 

where e  is the eigenvector and i varies from 1 to N-M. i

Let the noise eigenvector be defined as such that, NE

0)( 2 =− NEIs σ           (5.41) 

or, 

0=∗
NEAPA            (5.42) 

Based upon this approach, the psuedospectrum )(θP is given by, 
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when the psuedospectrum )(θP is plotted, peaks appear at the angles of arrival of the incident 

signals.  

 
5.3.2 ESPRIT (Estimation of Signal Parameters via Rotational Invariance Technique) 

 
ESPIRIT is one of the most efficient and robust methods for DOA estimation. It uses two 

arrays in the sense that the second element of each pair is displaced by the same distance in the 

same direction relative to the first element. It is not required to have two separate arrays but can 

be realized using a single array by being able to select a subset of elements. 
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Let the array signals received by the two arrays be denoted by and  such that )(tx )(ty

)()()( tntAstx x+=           (5.44) 

)()()( tntsAty y+= φ           (5.45) 

 
A  is a MK × matrix; where M is the number of steering vectors produced by N elements 

of the array. and denotes the noise induced at the elements of the two arrays. Now, 

by using the available methods, the numbers of directional sources,

)(tnx )(tny

M , are estimated based on 

principles such as Akaike’s information criterion (AIC) and Minimum description length (MDL). 

Two matrices U and are formed which denote the x yU M eigenvectors corresponding to the 

largest eigenvalues of the two array correlation matrices (Array correlation matrices). 

The eigenvectors of the following 2

yyR&xxR

M by 2 M matrix are obtained and are denoted by 
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Once the eigenvector V  is obtained its eigenvalues Mmm ,.....,1, =λ are computed. 

 
Now the DOA is given by 
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0∆  is the element separation in terms of wavelengths. Other variations of ESPRIT 

include beam-space ESPRIT, resolution-enhanced ESPRIT multiple invariance ESPRIT and 

higher order ESPRIT.  

 
The ESPIRIT DOA estimation technique is found to be more robust and faster when 

compared to MUSIC technique. The computation is also less complex comparatively. However, 

ESPIRIT cannot handle correlated sources. In the next chapters the LMS and SMI algorithms 

will be studied in detail with simulations. 

 
In the next chapters the LMS and SMI algorithms will be studied in detail with 

simulations. 
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