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✬

✫

✩

✪

Chapter 6

Double-Sideband Suppressed-Carrier

Amplitude Modulation and

Coherent Detection

Standard AM contains a sinusoidal component at

the carrier frequency which does not convey any

message information. It is included to create a

positive envelope which allows demodulation by

a simple inexpensive envelope detector. From an

information theory point of view, the power in the

carrier component is wasted.

Definition of the DSBSC-AM Signal

Let m(t) be a bandlimited baseband message

signal with cutoff frequency W . The DSBSC-AM

signal corresponding to m(t) is

s(t) = Acm(t) cosωct

This is the same as AM except with the sinusoidal

carrier component eliminated.
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✬

✫

✩

✪

A message m(t) typically has positive and negative

values so it can not be recovered from s(t) by an

envelope detector. A demodulation method called

coherent demodulation will be explored in this

experiment.

Spectrum of a DSBSC-AM Signal

The Fourier transform of s(t) is

S(ω) = 0.5AcM(ω − ωc) + 0.5AcM(ω + ωc)

This is the same as the AM spectrum but with the

discrete line at the carrier frequency removed. An

example is shown in the figure on Slide 6-6.

• The carrier frequency must satisfy the bound,

ωc > W so that the two shifted baseband

transforms do not overlap.

• When they overlap foldover is said to have

occurred and perfect demodulation cannot be

achieved.
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✬

✫

✩

✪

Why the Term Double-Sideband is

Used

When m(t) is a real signal, M(−ω) = M(ω) and

S(ωc − ω) = S(ωc + ω) for 0 ≤ ω ≤ ωc

• This equation shows that the component at

frequency ωc + ω contains exactly the same

information as the component at ωc − ω since

one can be uniquely determined from the

other by taking the complex conjugate.

• The portion of the spectrum for |ω| > ωc is

called the upper sideband and the portion for

|ω| < ωc is called the lower sideband.

• The fact that the modulated signal contains

both portions of the spectrum explains why

the term, double-sideband, is used.
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✬

✫

✩

✪

The Ideal Coherent Receiver for

DSBSC-AM
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First, the received signal is passed through

a bandpass filter B(ω) centered at the carrier

frequency that passes the DSBSC signal and

eliminates out-of-band noise.

The output of B(ω) is then multiplied by

a replica of the carrier wave. This replica is

generated by a device called the local oscillator

(LO) in the receiver. The device that performs

the product is often called a product modulator or

balanced mixer.
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✬

✫

✩

✪

Ideal Coherent Receiver Analysis

Assuming no noise, the product is

s1(t) = 2s(t) cosωct = 2Acm(t) cos2 ωct

= Acm(t) +Acm(t) cos 2ωct

The Fourier transform of the product modulator

output is

S1(ω) = AcM(ω) + 0.5AcM(ω + 2ωc)

+ 0.5AcM(ω − 2ωc)

and is illustrated in the figure on Slide 6-6. The

first term on the right-hand side is proportional to

the desired message. The second term has spectral

components centered around −2ωc and 2ωc. The

corresponding terms can be seen in S1(ω). The

undesired high frequency terms are eliminated by

the final lowpass filter which has cutoff frequency

W . This is often called a post detection filter.
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✫

✩

✪

Spectra in DSBSC-AM

Communication System
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(a) Fourier Transform of Baseband Message

(b) Fourier Transform of DSBSC-AM Signal

(c) Fourier Transform of Mixer Output

6-6



✬

✫

✩

✪

A Demodulator Using the

Pre-Envelope

An alternative method of demodulation is to first

form the pre-envelope of the received signal. With

no additive noise, this is

s+(t) = s(t) + jŝ(t)

= Acm(t) cosωct+ jAcm(t) sinωct

= Acm(t)ejωct

The baseband message is then recovered to within

a scale factor by forming the complex product

s+(t)e
−jωct = Acm(t)
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✬

✫

✩

✪

The Costas Loop Demodulator

The Costas loop locks to the carrier frequency

and phase and performs nearly ideal coherent

demodulation.
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Second-Order Costas Loop Demodulator

Let the received signal after it has passed through

a bandpass receive filter be

s(nT ) = Acm(nT ) cos(ωcnT + θ1)

where ωc is the nominal carrier frequency and θ1

is a constant or slowly changing phase angle.
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✬

✫

✩

✪

Costas Loop (cont. 1)

• The first step is to form the complex envelope

s+(nT ) = s(nT ) + jŝ(nT ) = Acm(nT )ej(ωcnT+θ1)

The parallel solid and dotted lines in the figure

represent complex signals with the solid line

corresponding to the real part and dotted line to

the imaginary part.

• The system generates an estimate φ(nT ) of the

angle of the received signal that can expressed as

φ(nT ) = ωcnT + θ2(nT )

It is passed through the complex exponential box

to give the local oscillator signal e−jφ(nT ). The

method for generating this angle will be explained

shortly.
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✬

✫

✩

✪

Costas Loop (cont. 2)

• The local oscillator signal is multiplied by the

complex envelope resulting in the signal

c(nT ) = s+(nT )e
−jφ(nT ) = Acm(nT )ej[θ1−θ2(nT )]

which is separated into its real part

c1(nT ) = s(nT ) cosφ(nT ) + ŝ(nT ) sinφ(nT )

= Acm(nT ) cos[θ1 − θ2(nT )]

and imaginary part

c2(nT ) = ŝ(nT ) cosφ(nT )− s(nT ) sinφ(nT )

= Acm(nT ) sin[θ1 − θ2(nT )]

• The loop is in lock when the phase error

θ1 − θ2 remains small. When θ1 − θ2 ≡ 0, the

demodulated message appears at the point labeled

c1(nT ) = m1(nT ) and c2(nT ) = 0. The filter

G(ω) is a lowpass filter that passes the message

and eliminates out-of-band noise.
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✬

✫

✩

✪

Costas Loop (cont. 3)

A lock detection strategy is to lowpass filter

c22(nT ) and declare that the loop is in lock when

this signal falls below a threshold.

• The real and imaginary parts are multiplied,

resulting in the signal

q(nT ) = c1(nT )c2(nT )

= A2
cm

2(nT ) cos[θ1 − θ2(nT )] sin[θ1

− θ2(nT )]

= 0.5A2
cm

2(nT ) sin{2[θ1 − θ2(nT )]}

Notice that when θ1 and θ2 differ by less than

90 degrees, q(nT ) has the same sign as the phase

error θ1 − θ2, so it indicates in which direction

the local phase estimate θ2 should be changed to

reduce the phase error to zero. When the loop is

in lock, the small angle approximation sinx ≃ x

can be used to accurately approximate q(nT ) by

q(nT ) ≃ A2
cm

2(nT )[θ1 − θ2(nT )]

for |θ1 − θ2(nT )| ≪ 1
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✬

✫

✩

✪

Costas Loop (cont. 4)

Generating the Phase Estimate

The lower half of the block diagram generates the

loop’s estimate of the phase of the received signal

by computing

φ((n+ 1)T ) = φ(nT ) + ωcT + αq(nT ) + σ(nT )

where

σ(nT ) = βq(nT ) + σ((n− 1)T )

and α and β are small positive constants with

β < α/50, typically.

• The basic philosophy behind these equations

is that at each new sampling instant the loop’s

phase estimate is incremented by the nominal

change in carrier phase between samples ωcT

plus a small correction term αq(nT ) roughly

proportional to the phase error.
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✬

✫

✩

✪

Generating the Phase Estimate

(cont.)

• Notice that when q(nT ) = 0 for all n, φ(nT )

is the linear ramp

φ(nT ) = ωcnT + φ(0)

which has a slope equal to the nominal carrier

frequency.

• The accumulator block β/(1−z−1) is included

to allow the loop to track a carrier input

phase θ1(nT ) that is a linear ramp with zero

steady-state error. The input phase has this

form when there is a frequency offset between

the received and local carrier frequencies.

The output σ(nT ) of the accumulator reaches

the steady-state value ∆ω T which is the

phase change between samples caused by the

frequency offset ∆ω.
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✬

✫

✩

✪

Linearized Loop Model

The Costas loop is a nonlinear and time-varying

system. However, when it is in lock, it can be ac-

curately approximated by a linear, time-invariant

system by using the small angle approximations

and replacing m2(nT ) by its expected value. Let

k1 = A2
c E{m2(nT )}

and further approximate q(nT ) by

q(nT ) ≃ k1[θ1 − θ2(nT )]
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✬

✫

✩

✪

Linearized Loop Model (cont.)

The transfer function for the linearized loop is

H(z) =
Θ2(z)

Θ1(z)

=
k1(α+ β)

(

1− α
α+β

z−1
)

z−1

1− [2− k1(α+ β)]z−1 + (1− k1α)z−2

The frequency response is obtained by letting

z = ejωT and has the shape of a narrowband

lowpass filter for small α and β. The closed loop

gain at zero frequency is H(1) = 1.

Performance with Additive Noise

Suppose the received signal without noise is

s(t) = a(t) cos(ωct)

and corrupting band limited additive noise is

n(t) = nI(t) cos(ωct)− nQ(t) sin(ωct)

where nI(t) and nQ(t) are the independent lowpass

inphase and quadrature noise components.
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✬

✫

✩

✪

Performance with Additive Noise

(cont. 1)

Then, the received signal is

r(t) = s(t) + n(t)

= [a(t) + nI(t)] cos(ωct)− nQ(t) sin(ωct)

The Hilbert transform of the received signal is

r̂(t) = [a(t) + nI(t)] sin(ωct) + nQ(t) cos(ωct)

and the pre-envelope is

r+(t) = r(t) + jr̂(t)

= [a(t) + nI(t)][cos(ωct) + j sin(ωct)]

+jnQ(t)[cos(ωct) + j sin(ωct)]

= [a(t) + nI(t) + jnQ(t)]e
jωct

The demodulator output is

c1(t) = Re
{

r+(t)e
−jωct

}

= a(t) + nI(t)

Notice that only the inphase noise component is

present in the output. The square-law demodula-

tor output contains both nI(t) and nQ(t).
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✬

✫

✩

✪

Laboratory Exercises and

Experiments for the Costas

Loop

Use the signal generator to generate the AM wave

s(t) = Acm(t) cos 2πfct

where

Ac = 1

m(t) = 1 + 0.4 cos(2πfmt+Φ)

fc = 4000 Hz

fm = 400 Hz

where Φ is a random variable uniform over [0, 2π).

Actually, s(t) is an AM signal with modulation

index µ = 0.4. However, it can also be considered

to be a DSBSC-AM signal with m(t) containing

a dc value and all the theory for the Costas loop

still holds.

6-17



✬

✫

✩

✪

Theoretical Design Exercises

In these exercises you will do theoretical compu-

tations to select the Costas loop parameters for a

reasonable design. Do the following:

1. Compute k1 by the equation on Slide 6-14.

2. Choose some small values for the loop filter

constants, for example, α = 0.01 and β =

0.0002. You will find that β should be small

relative to α, perhaps, less than α/50, to get

a transient response without excess ripple.

Recursively compute the response of the

linearized loop to a unit step in θ1(nT ) using

the following realization of H(z):

θ2(nT ) = k1[(α+β)θ1((n− 1)T )−αθ1((n−2)T )]

+ [2− k1(α+ β)]θ2((n− 1)T )

− (1− k1α)θ2((n− 2)T )

Continue the computations until θ2(nT ) gets close

to its final value and plot the result. Repeat this

step for different values of α and β until you find

a pair for which the step response settles to its

final value in about 0.5 seconds.
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✬

✫

✩

✪

3. Compute and plot the closed loop amplitude

response A(f) = 20 log
10

|H(ej2πf/fs)| for the

values of α and β finally selected in the previous

step.

Hardware Experiments

Write a C/assembly language program for the

TMS320C6713 to do the following:

1. Initialize the DSP and codec as in Chapter 2.

2. Read samples from the ADC at a 16 kHz

sampling rate.

3. Demodulate the input signal with a Costas

loop. Make sure to keep the LO angle confined

to 0 ≤ φ(nT ) ≤ 2π.

4. Send c1(nT ) = m1(nT ) to the left AIC output

channel and c2(nT ) to the right channel.

What should c2(nT ) be when the loop is in

lock?
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✬

✫

✩

✪

Hardware Experiments (cont. 1)

Perform the following exercises:

1. Connect the signal generator to the DSK line

input and set it to generate the AM signal

s(t) defined above. Connect the DSK line

output to the oscilloscope and debug your

DSP program if the output is not m(t).

2. Investigate your Costas loop performance in

the presence of a frequency offset.

• First set the signal generator carrier fre-

quency to the nominal 4 kHz value and let

your loop achieve lock.

• Then slowly change the carrier frequency to

a slightly different value and see if the loop

remains locked.

• Use Code Composer to watch σ(nT ) in your

DSP program and check that it has the correct

steady-state value for the frequency offset you

are using.
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✬

✫

✩

✪

Hardware Experiments (cont. 2)

Creating a Watch Window

To watch a variable, right click on the

variable and then left click on “Add Watch

Expression...” Enter the variable name in the

box of the “Add Watch Expression” window.

You can move and resize the watch window as

you prefer.

3. The linearized equations describe the loop

behavior accurately when it is in lock. When

there is a large initial frequency offset, the

behavior is quite different.

• Experimentally investigate this behavior by

setting the signal generator carrier frequency

to a value that differs by 30 Hz or more

from the nominal 4 kHz value and starting

the Costas loop. The loop may take a much

longer time than you expected to achieve lock

and may not even lock. This is called its pull

in behavior.
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✬

✫

✩

✪

Hardware Experiments (cont. 3)

4. Design and implement the lowpass filter G(ω)

as an IIR filter. It should have a cutoff

frequency such that it passes the baseband

message band and eliminates noise above the

message band.

5. Experiment demodulating signals corrupted

by additive, zero mean, Gaussian noise.

Observe the behavior as the SNR is decreased

and make a rough estimate of the SNR at

which the demodulator no longer works. It

should work at lower SNR’s than the envelope

detectors. You should “gear shift” to much

smaller values of α and β once the loop is in

lock to reduce its bandwidth and response to

noise.

6. Set up an array and write the first few

thousand samples of q(nT ) to the array.

Do not add noise to the input samples.

Then send the array to the PC and plot the
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✬

✫

✩

✪

resulting signal to get a clearer picture of the

loop transient response. You can use the C

function fprintf() to write the samples to a

file on the PC. If time permits, do this with

other signals in the loop.
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