
Computation

Visualization

Programming

Creating Graphical User Interfaces
Version 1

MATLAB
®

The Language of Technical Computing

How to Contact The MathWorks:

www.mathworks.com Web
comp.soft-sys.matlab Newsgroup

support@mathworks.com Technical support
suggest@mathworks.com Product enhancement suggestions
bugs@mathworks.com Bug reports
doc@mathworks.com Documentation error reports
service@mathworks.com Order status, license renewals, passcodes
info@mathworks.com Sales, pricing, and general information

508-647-7000 Phone

508-647-7001 Fax

The MathWorks, Inc. Mail
3 Apple Hill Drive
Natick, MA 01760-2098

For contact information about worldwide offices, see the MathWorks Web site.

Creating Graphical User Interfaces
 COPYRIGHT 2000 by The MathWorks, Inc.
The software described in this document is furnished under a license agreement. The software may be used
or copied only under the terms of the license agreement. No part of this manual may be photocopied or repro-
duced in any form without prior written consent from The MathWorks, Inc.

FEDERAL ACQUISITION: This provision applies to all acquisitions of the Program and Documentation by
or for the federal government of the United States. By accepting delivery of the Program, the government
hereby agrees that this software qualifies as "commercial" computer software within the meaning of FAR
Part 12.212, DFARS Part 227.7202-1, DFARS Part 227.7202-3, DFARS Part 252.227-7013, and DFARS Part
252.227-7014. The terms and conditions of The MathWorks, Inc. Software License Agreement shall pertain
to the government’s use and disclosure of the Program and Documentation, and shall supersede any
conflicting contractual terms or conditions. If this license fails to meet the government’s minimum needs or
is inconsistent in any respect with federal procurement law, the government agrees to return the Program
and Documentation, unused, to MathWorks.

MATLAB, Simulink, Stateflow, Handle Graphics, and Real-Time Workshop are registered trademarks, and
Target Language Compiler is a trademark of The MathWorks, Inc.

Other product or brand names are trademarks or registered trademarks of their respective holders.

Printing History: November 2000 New for MATLAB 6.0 (Release12) (Online only)
June 2001 Revised for MATLAB 6.1(Release 12.1 (Online only)

i

Contents

1
Getting Started with GUIDE

GUIDE – GUI Development Environment 1-3
GUIDE Toolset . 1-4
Understanding How to Create GUIs . 1-4

Getting Started Example . 1-5
Example – The GUI Design . 1-5
Example – Laying Out the GUI . 1-6
Creating the Layout . 1-7
Example – Programming the GUI . 1-16
Example – Testing the GUI . 1-19
Example – Adding the File Menu to the GUI 1-20
Example – Programming the Menu Callbacks 1-24

User Interface Controls . 1-26
Push Buttons . 1-26
Toggle Buttons . 1-27
Radio Buttons . 1-27
Checkboxes . 1-29
Edit Text . 1-29
Static Text . 1-30
Sliders . 1-30
Frames . 1-32
List Boxes . 1-33
Popup Menus . 1-34
Enabling or Disabling Controls . 1-35
Axes . 1-36
Figure . 1-37

ii

2
MATLAB GUIs

Introduction . 2-2

Creating GUIs with GUIDE . 2-3
GUI Development Environment . 2-3

Editing Version 5 GUIs with Version 6 GUIDE 2-6

Selecting GUIDE Application Options 2-8
Configuring the Application M-File . 2-8

Resize Behavior . 2-10
Making Your GUI Nonresizable . 2-10
Allowing Proportional GUI Resizing . 2-10
User-Specified Resize Operation . 2-11

Command-Line Accessibility . 2-12
Access Options . 2-12
Figure Properties That Control Access 2-12
Using findobj . 2-13

Electing to Generate Only the FIG-File 2-14

The Generated M-File . 2-15
Callback Function Names and Arguments 2-15
Application Allows Only One Instance to Run 2-18
Using the System Background Colors 2-18
Waiting for User Input . 2-20

Renaming Application Files and Tags 2-21
Using Save As . 2-21
Getting Everything Right . 2-21
Changing Component Tag Properties . 2-21
Changing the Name of Callback Subfunctions 2-22
Changing the Name of the M-File and FIG-File 2-24

iii

3
GUIDE Layout Tools

GUI Layout Tools . 3-2

Laying Out GUIs – The Layout Editor 3-4
Placing an Object In the Layout Area . 3-4
Activating the Figure . 3-5
Saving the Layout . 3-6
Displaying Your GUI . 3-6
Layout Editor Preferences . 3-6
Layout Editor Context Menus . 3-7

Aligning Components in the Layout Editor 3-10
Aligning Groups of Components – The Alignment Tool 3-10
Grids and Rulers . 3-12
Aligning Components to Guide Lines . 3-13
Front to Back Positioning . 3-14

Setting Component Properties – The Property Inspector 3-16

Viewing the Object Hierarchy – The Object Browser 3-18

Creating Menus – The Menu Editor . 3-19
Defining Menus for the Menubar . 3-19
Menu Callbacks . 3-24
Defining Context Menus . 3-25

Saving the GUI . 3-29
FIG-Files . 3-29

4
Programming GUIs

GUI Programming Topics . 4-2

Understanding the Application M-File 4-3

iv

Execution Paths in the Application M-File 4-4
Initializing the GUI . 4-7

Managing GUI Data with the Handles Structure 4-10
Passing Data in the Handles Structure 4-10
Obtaining the Updated Handles Structure 4-12
If You Are Not Using a Handles Structure 4-12
Application-Defined Data . 4-14

Designing for Cross-Platform Compatibility 4-15
Using the Default System Font . 4-15
Using Standard Background Color . 4-16
Cross-Platform Compatible Figure Units 4-17

Types of Callbacks . 4-18
Callback Properties for All Graphics Objects 4-18
Callback Properties for Figures . 4-18
Which Callback Executes . 4-19
Adding A Callback . 4-19

Interrupting Executing Callbacks . 4-20
Controlling Interruptibility . 4-20
The Event Queue . 4-20
Event Processing During Callback Execution 4-21

Controlling GUI Figure Window Behavior 4-23
Using Modal Figure Windows . 4-23

5
Application Examples

Examples of Application Techniques . 5-2

GUI with Multiple Axes . 5-3
Techniques Used in the Example . 5-3
View the Layout and Application M-File 5-4
Design of the GUI . 5-4

v

Plot Push Button Callback . 5-7

Launching a Dialog to Confirm an Operation 5-9
Dialog Requirements . 5-9
View the Layout and Application M-File 5-10
Implementing the GUI . 5-10
The Close Button Callback . 5-12
The Confirmation Dialog M-file . 5-12
Launch the Dialog . 5-13
Specify the Location of the Dialog . 5-14
Wait for User Response . 5-14
Executing a Callback . 5-15
Defining the Yes and No Buttons Callbacks 5-15
Protecting the GUI with a Close Request Function 5-16

List Box Directory Reader . 5-18
View the Layout and Application M-File 5-18
Implementing the GUI . 5-19
Specifying the Directory to List . 5-19
Loading the List Box . 5-21
The List Box Callback . 5-22

Accessing Workspace Variables from a List Box 5-24
Techniques Used in This Example . 5-24
View the Layout and Application M-File 5-25
Reading Workspace Variables . 5-25
Reading the Selections from the List Box 5-26

A GUI to Set Simulink Model Parameters 5-28
Techniques Used in This Example . 5-28
View the Layout and Application M-File 5-28
How to Use the GUI (Text of GUI Help) 5-29
Launching the GUI . 5-30
Programming the Slider and Edit Text Components 5-31
Running the Simulation from the GUI 5-33
Removing Results from the List Box . 5-34
Plotting the Results Data . 5-35
The GUI Help Button . 5-37
Closing the GUI . 5-38
The List Box Callback . 5-38

vi Contents

An Address Book Reader . 5-40
Techniques Used in This Example . 5-40
Managing Global Data . 5-40
View the Layout and Application M-File 5-41
Launching the GUI . 5-41
Loading an Address Book Into the Reader 5-43
The Contact Name Callback . 5-45
The Contact Phone # Callback . 5-47
Paging Through the Address Book – Prev/Next 5-48
Saving Changes to the Address Book from the Menu 5-50
The Create New Menu . 5-51
The Address Book Resize Function . 5-52

1
Getting Started with
GUIDE

GUIDE – GUI Development Environment 1-3
GUIDE Toolset 1-4
Understanding How to Create GUIs 1-4

Getting Started Example 1-5
Example – The GUI Design 1-5
Example – Laying Out the GUI 1-6
Creating the Layout 1-7
Example – Programming the GUI 1-16
Example – Testing the GUI 1-19
Example – Adding the File Menu to the GUI 1-20
Example – Programming the Menu Callbacks 1-24

User Interface Controls 1-26
Push Buttons . 1-26
Toggle Buttons 1-27
Radio Buttons 1-27
Checkboxes . . 1-29
Edit Text . . 1-29
Static Text . 1-30
Sliders . 1-30
Frames . 1-32
List Boxes . 1-33
Popup Menus . 1-34
Enabling or Disabling Controls 1-35
Axes . 1-36

Figure . 1-37

1 Getting Started with GUIDE

1-2

This section illustrates the process of using GUIDE to create GUIs:

• GUI Development Environment – overview of the layout tools provided by
GUIDE.

• Getting Started Example – an example illustrating how to use GUIDE.

• User Interface Controls – descriptions of the components you use to create
GUIs.

For more in depth information about creating graphical users interfaces see
MATLAB GUIs.

GUIDE – GUI Development Environment

1-3

GUIDE – GUI Development Environment
GUIDE, MATLAB’s Graphical User Interface development environment,
provides a set of tools for laying out your GUI. The Layout Editor is the control
panel for GUIDE. To start the Layout Editor, use the guide command.

The following picture shows the Layout Editor with the Show names in
component palette preference selected.

Component

Palette

Alignment Tool Menu Editor Property Inspector Figure ActivatorObject Browser

Layout Area

Figure Resize Tab

Undo

Redo

1 Getting Started with GUIDE

1-4

GUIDE Toolset
The following links provide more information on the full set of GUIDE
development tools.

• Layout Editor – add and arrange objects in the figure window.

• Alignment Tool – align objects with respect to each other.

• Property Inspector – inspect and set property values.

• Object Browser – observe a hierarchical list of the Handle Graphics objects
in the current MATLAB session.

• Menu Editor – create menus for the window menu bar and context menus for
any component in your layout.

Understanding How to Create GUIs
For more in depth information on how GUIDE works, see Creating GUIs with
GUIDE. For a simple example to get started using GUIDE see the next section,
A GUI Example.

Getting Started Example

1-5

Getting Started Example
This example shows how to create a GUI using GUIDE. It illustrates the
process you should follow when creating your GUI. This process entails:

• Design the GUI – often it is better to design the GUI on paper before
beginning the implementation process.

• Laying out the GUI figure – the GUI figure is the window that contains the
user interface controls, such as push buttons and menus and can also contain
axes for displaying graphs and images.

• Program the GUI – the M-file generated by GUIDE displays and controls the
GUI figure you created with GUIDE. It is in this M-file that you program the
callback functions for each user interface control.

GUIDE’s layout tools enable you to add and arrange components in the GUI
figure. When you activate or save your GUI for the first time, GUIDE generates
the M-file you use to program the GUI.

This example is presented in five sections:

• Designing the GUI – a description of the GUI design

• Laying out the GUI – placing the controls within the Layout Editor

• Programming the GUI – writing the callbacks for the controls

• Laying out the menu – adding the menu to the GUI figure

• Programming the menu callbacks – writing the callbacks for the menus

Example – The GUI Design
The GUI used in this example contains one axes that can display either a
surface, mesh, or contour plot of data selected from the popup menu. The File
menu provides options to print the graphic and to close the GUI.

The following picture shows a sketch similar to what you might use as a
starting point for the design.

1 Getting Started with GUIDE

1-6

The popup menu contains three strings – “peaks”, “membrane”, and “sinc”,
which enable the user to select the data to plot. The GUI program generates
this data by executing one of three functions.

Example – Laying Out the GUI
This section illustrates how to layout GUI components (i.e., user interface
controls, like push buttons, popup menus, text labels, etc.) in the GUI.

Layout and Code for the Example
Use the following links to display the GUIDE Layout Editor and the MATLAB
Editor with a completed version of this example. This enables you to see the
values of all component properties and to understand how the components are
assembled to create the GUI. You can also see a complete listing of the code
that is discussed in the following sections.

)LOH

Select Data

peaks

Contour

Mesh

Surf

Axes

Push buttons to
select plot type

Popup for selecting
data

File menu with
Print and Close

Getting Started Example

1-7

Note The following links execute MATLAB commands and are designed to
work within the MATLAB Help browser. The first link adds a directory to your
MATLAB path.

Layout Editor with completed GUI layout

MATLAB Editor with completed application M-file

View an Animated Demo
The following link displays an animated version of this example.

Show GUIDE demonstration

Creating the Layout
Open the Layout Editor using the guide command. This displays a blank
layout grid to which you can added components that you select from the
palette.

1. Set the GUI Figure Size
Specify the size of the GUI by resizing the grid area in the Layout Editor. Click
on the lower-right corner and resize the grid until it is about 4-by-3 inches.

1 Getting Started with GUIDE

1-8

If you want to set the size of the GUI to an exact value, set the Position
property using the Property Inspector (select Property Inspector from the
View menu). Change the Units to inches to set the figure size, then change
them back to characters before deploying the GUI.

Getting Started Example

1-9

2. Add the Components
Select the components to add from the palette and drag them into the layout
area. You can resize components from any corner handle while it is selected.

Add three push buttons, a static text, a popup menu, and an axes. Arrange
them as shown in the following picture.

1 Getting Started with GUIDE

1-10

3. Align the Objects
To align components with respect to one another, select Align Objects from the
Tools menu. The Alignment Tool sets the relative vertical and horizontal
alignment of selected components. The following picture show the three push
buttons selected (ctrl+click to multiple select) and ready to be aligned
according to the settings:

• 20 pixels spacing between push buttons in the vertical direction.

• Left-aligned in the horizontal direction.

Getting Started Example

1-11

4. Set Properties for Each Component
To set the properties of each component, select the Property Inspector from
the View menu.

Push Buttons and Static Text
Set the String properties of the push buttons and static text to create the
labels. For example, the following picture shows the Surf push button
properties.

1 Getting Started with GUIDE

1-12

Popup Menu Items
Each item in the popup menu list needs to be on a separate line in the String
property edit box:

Getting Started Example

1-13

Tag and Callback Properties
When you first add a component to the layout, its Callback property is set to
the string <automatic>.

1 Getting Started with GUIDE

1-14

When you save or activate the GUI, GUIDE converts this string to one that
calls the callback subfunction in the generated M-file. GUIDE uses the
component’s Tag property to name its callback function. It is, therefore, useful
to set Tag properties to descriptive names before you save or activate the GUI
for the first time.

Getting Started Example

1-15

This example sets the popup menu Tag to data_popup, resulting in the name
data_popup_Callback for the popup menu’s callback function. Set the push
button Tags to surf_pushbutton, mesh_pushbutton, and contour_pushbutton.

The next section, Example – Programming the GUI, provides more information
on the callback functions for this GUI.

1 Getting Started with GUIDE

1-16

5. Activate the GUI
Activate the GUI by selecting Activate Figure from the Tools menu or use the
activator button from the GUIDE toolbar. The following picture shows the
GUI. See Activating the Figure for more detailed information on what figure
activation does.

The Application M-File
Activating the GUI also opens the MATLAB editor with the M-file generated
for the GUI. You must program the various components in your GUI in this
M-file. The next section show how to do this.

Note The name of the FIG-file saved by the Layout Editor and the generated
application M-file must match. See Renaming Application Files and Tags if
you want to rename files or change Tags after first activating the GUI.

Example – Programming the GUI
When you first save or activate the GUI, GUIDE generates the application
M-file that will contain all the code to launch and control the GUI. You must

Getting Started Example

1-17

write the callbacks – the functions that execute when users activate a
component in the GUI.

The application M-file:

• Initializes and launches the GUI.

• Contains the callback functions for all components in the GUI.

GUIDE generates this M-file with empty subfunctions for each component that
has a callback associated with it – in this example, the three push buttons and
the popup menu have callbacks.

A Note About Handles and Global Data
A key feature in the generated M-file is the handles structure. This structure
has two purposes. It:

• Stores the handles of all controls, menus, and axes used in the GUI.

• Stores global data used in the program.

Accessing Handles. Each object handle is stored in a field of the handles
structure having the same name as the object’s Tag. For example,

handles.data_popup

contains the handle of the popup menu used in this example.

Storing Global Data. You can store data and pass it to any callback using the
handles structure. To do this, create a new field in the handles structure and
save it using the guidata function. For example, from the callback of the object
whose handle is h,

handles.x_data = X;
guidata(h,handles)

saves the variable X in the x_data field of the handles structure. guidata then
writes the new version of handles to the figure’s application data to save it. To
obtain X in another callback, reference the correct field:

X = handles.x_data;

For more detailed information on the handles structure, see:

• Creating and Storing the Handles Structure

1 Getting Started with GUIDE

1-18

• Managing GUI Data

Popup Menu Callback
The popup menu enables users to select the data to plot. For simplicity, this
example uses MATLAB functions to generate the data, but a more typical
scenario would involve reading data from a file.

This callback reads the popup menu Value property to determine what item is
currently displayed and loads data into the handles structure accordingly.

function varargout = data_popup_Callback(h,eventdata,handles,varargin)

val = get(h,'Value');

switch val

case 1 % User selected peaks

handles.data = peaks(35);

case 2 % User selected membrane

handles.data = membrane;

case 3 % User selected sinc

[x,y] = meshgrid(-8:.5:8);

r = sqrt(x.^2+y.^2) + eps;

z = sin(r)./r;

handles.data = z;

end

guidata(h,handles) % Save the handles structure after adding data

See Managing GUI Data with the Handles Structure for more information on
using the handles structure to pass data between callback functions.

Initializing the Data
The callback for the popup menu executes only when users change the
currently displayed value. Until this callback runs, there is no data field in the
handles structure and no data to plot. This means you must initialize the
handles structure by calling the popup menu callback in the initialization
section of the application M-file.

Add the call to data_popup_Callback after the application M-file initializes the
handles structure. See Understanding the Application M-File for information
on where in the application M-file to put you initialization code.

% Call the popup menu callback to initialize the handles.data

% field with the current value of the popup

Getting Started Example

1-19

data_popup_Callback(handles.data_popup,[],handles)

Push Button Callbacks
Each of the push buttons creates a different type of plot using the data specified
by the current selection in the popup menu. Their callbacks get data from the
handles structure and then plot it.

Surf push button callback:

function varargout = surf_pushbutton_Callback(h,eventdata,handles,varargin)

z = handles.data; % Load data from handles structure

surf(z);

Mesh push button callback:

function varargout = mesh_pushbutton_Callback(h,eventdata,handles,varargin)

z = handles.data; % Load data from handles structure

mesh(z)

Contour push button callback:

function varargout =

contour_pushbutton_Callback(h,eventdata,handles,varargin)

z = handles.data; % Load data from handles structure

contour(z)

Example – Testing the GUI
After writing the callbacks, you can activate the GUI to test it. Activate the
GUI by selecting Activate Figure from the Tools menu or use the activator
button from the GUIDE toolbar. Select membrane in the popup menu and press
the Contour push button. The GUI should look like this:

1 Getting Started with GUIDE

1-20

Example – Adding the File Menu to the GUI
The GUI has a File menu with two menu items:

• Print – sends the plot to the user’s default printer. This item is grayed out if
there is no plot currently displayed.

• Close – closes the GUI window.

To create the menu, display the Menu Editor by selecting the Menu Editor
item in the Tool menu.

1. Add the File Menu
Use the New Menu tool to add the top-level menu.

Getting Started Example

1-21

2. Set the Label and Tag
Set the Label property to the word File. This is the name of the menu as it
appears on the GUI menu bar. Set the Tag property to a descriptive name.
GUIDE uses the Tag property to name the menu callback function (as well as
the field in the handles structure that contains the menu handle).

Initially, the Callback property is set to <automatic>. This means GUIDE
automatically adds a callback function to the application M-file when you save
or activate the GUI.

1 Getting Started with GUIDE

1-22

3. Add the Items
Select File and click the New Menu Item tool. Each time you click New Menu
Item, the editor adds a new submenu to the selected menu.

4. Set the Labels and Tags for the Menu Items
Set the Label and Tag properties for each menu item. GUIDE generates a
callback for each menu item as well.

Save or activate the GUI to add the menu to the menu bar and to add the
callbacks to the application M-file. The next section shows you how to program
the menu.

Getting Started Example

1-23

5. Activate the GUI
After creating the menus with the Menu Editor, you can activate the GUI from
the Layout Editor. This causes GUIDE to generate the empty callback
functions in the application M-file, which you can now program. Select sinc in
the popup menu and click on the Mesh push button. The activated GUI looks
like this when you pull down the File menu.

1 Getting Started with GUIDE

1-24

Example – Programming the Menu Callbacks
After adding the File menu to the layout (you cannot see the menu bar in the
Layout Editor), edit the application M-file. It will contain empty callback
functions for the File menu as well as the Print and Close items.

File Menu Callback
By default, when a user clicks on the File menu, MATLAB displays the menu
items. Therefore, the only purpose of the File menu callback in this example is
to disable the Print menu item when there is no plot being displayed. You can
accomplish this by checking to see if the axes Children property is empty (in
which case, there is nothing displayed in the axes).

The menu’s Enable property controls whether a particular item is active or
inactive. The item is grayed out if Enable is set to off.

The callback uses isempty to determine if the axes contains a plot and enables
or disables the menu accordingly.

function varargout = file_menu_Callback(h, eventdata, handles, varargin)

if isempty(get(handles.axes1,'Children'))

set(handles.print_submenu,'Enable','off')

Getting Started Example

1-25

else

set(handles.print_submenu,'Enable','on')

end

The Print Item Callback
The callback for the Print menu item uses the print command to print the
current plot on the user’s default printer. The -f option specifies the GUI
figure. Since the figure’s Tag property is set to figure1, the figure’s handle is
contained in the figure1 field of the handles structure.

function varargout = print_submenu_Callback(h, eventdata, handles, varargin)

print -f handles.figure1

The Close Item Callback
The callback for the Close menu item uses the delete command to close the
GUI figure. Since the figure’s Tag property is set to figure1, the figure’s handle
is contained in the figure1 field of the handles structure.

function varargout = close_submenu_Callback(h, eventdata, handles, varargin)

delete(handles.figure1)

1 Getting Started with GUIDE

1-26

User Interface Controls
The Layout Editor component palette contains the user interface controls that
you can use in your GUI. These components are MATLAB uicontrol objects and
are programmable via their Callback properties. This section provides
information on these components.

Push Buttons
Push buttons generate an action when pressed (e.g., an OK button may close a
dialog box and apply settings). When you click down on a push button, it
appears depressed; when you release the mouse, the button’s appearance
returns to its nondepressed state; and its callback executes on the button up
event.

Properties to Set

• String – set this property to the character string you want displayed on the
push button.

• Tag – GUIDE uses the Tag property to name the callback subfunction in the
application M-file. Set Tag to a descriptive name (e.g., close_button) before
activating the GUI.

Programming the Callback
When the user clicks on the push button, its callback executes. Push buttons
do not return a value or maintain a state.

Push Buttons Sliders

Toggle Buttons Frames

Radio Buttons Listboxes

Checkboxes Popup Menus

Edit Text Axes

Static Text Figures

User Interface Controls

1-27

Toggle Buttons
Toggle buttons generate an action and indicate a binary state (e.g., on or off).
When you click on a toggle button, it appears depressed and remains depressed
when you release the mouse button, at which point the callback executes. A
subsequent mouse click returns the toggle button to the nondepressed state
and again executes its callback.

Programming the Callback
The callback routine needs to query the toggle button to determine what state
it is in. MATLAB sets the Value property equal to the Max property when the
toggle button is depressed (Max is 1 by default) and equal to the Min property
when the toggle button is not depressed (Min is 0 by default).

From the GUIDE Application M-File
The following code illustrates how to program the callback in the GUIDE
application M-file.

function varargout = togglebutton1_Callback(h,eventdata,handles,varargin)

button_state = get(h,'Value');

if button_state == get(h,'Max')

% toggle button is pressed

elseif button_state == get(h,'Min')

% toggle button is not pressed

end

Adding an Image to a Push Button or Toggle Button
Assign the CData property an m-by-n-by-3 array of RGB values that define a
truecolor image. For example, the array a defines 16-by-128 truecolor image
using random values between 0 and 1 (generated by rand).

a(:,:,1) = rand(16,128);

a(:,:,2) = rand(16,128);

a(:,:,3) = rand(16,128);

set(h,'CData',a)

Radio Buttons
Radio buttons are similar to checkboxes, but are intended to be mutually
exclusive within a group of related radio buttons (i.e., only one button is in a

1 Getting Started with GUIDE

1-28

selected state at any given time). To activate a radio button, click the mouse
button on the object. The display indicates the state of the button.

Implementing Mutually Exclusive Behavior
Radio buttons have two states – selected and not selected. You can query and
set the state of a radio button through its Value property:

• Value = Max, button is selected.

• Value = Min, button is not selected.

To make radio buttons mutually exclusive within a group, the callback for each
radio button must set the Value property to 0 on all other radio buttons in the
group. MATLAB sets the Value property to 1 on the radio button clicked by the
user.

The following subfunction, when added to the application M-file, can be called
by each radio button callback. The argument is an array containing the
handles of all other radio buttons in the group that must be deselected.

function mutual_exclude(off)

set(off,'Value',0)

Obtaining the Radio Button Handles. The handles of the radio buttons are available
from the handles structure, which contains the handles of all components in
the GUI. This structure is an input argument to all radio button callbacks.

The following code shows the call to mutual_exclude being made from the first
radio button’s callback in a group of four radio buttons.

function varargout = radiobutton1_Callback(h,eventdata,handles,varargin)

off = [handles.radiobutton2,handles.radiobutton3,handles.radiobutton4];

mutual_exclude(off)

% Continue with callback

.

.

.

After setting the radio buttons to the appropriate state, the callback can
continue with its implementation-specific tasks.

User Interface Controls

1-29

Checkboxes
Check boxes generate an action when clicked and indicate their state as
checked or not checked. Check boxes are useful when providing the user with
a number of independent choices that set a mode (e.g., display a toolbar or
generate callback function prototypes).

The Value property indicates the state of the check box by taking on the value
of the Max or Min property (1 and 0 respectively by default):

• Value = Max, box is checked.

• Value = Min, box is not checked.

You can determine the current state of a check box from within its callback by
querying the state of its Value property, as illustrated in the following
example:

function checkbox1_Callback(h,eventdata,handles,varargin)

if (get(h,'Value') == get(h,'Max'))

% then checkbox is checked-take approriate action

else

% checkbox is not checked-take approriate action

end

Edit Text
Edit text controls are fields that enable users to enter or modify text strings.
Use edit text when you want text as input. The String property contains the
text entered by the user.

To obtain the string typed by the user, get the String property in the callback.

function edittext1_Callback(h,eventdata,handles,varargin)

user_string = get(h,'string');

% proceed with callback...

Obtaining Numeric Data from an Edit Test Component
MATLAB returns the value of the edit text String property as a character
string. If you want users to enter numeric values, you must convert the
characters to numbers. You can do this using the str2double command, which
converts strings to doubles. If the user enters non-numeric characters,
str2double returns NaN.

1 Getting Started with GUIDE

1-30

You can use the following code in the edit text callback. It gets the value of the
String property and converts it to a double. It then checks if the converted
value is NaN, indicating the user entered a non-numeric character (isnan) and
displays an error dialog (errordlg).

function edittext1_Callback(h,eventdata,handles,varargin)

user_entry = str2double(get(h,'string'));

if isnan(user_entry)

errordlg('You must enter a numeric value','Bad Input','modal')

end

% proceed with callback...

Triggering Callback Execution
On UNIX systems, clicking on the menubar of the figure window causes the
edit text callback to execute. However, on Microsoft Windows systems, if an
editable text box has focus, clicking on the menubar does not cause the editable
text callback routine to execute. This behavior is consistent with the respective
platform conventions. Clicking on other components in the GUI execute the
callback.

Static Text
Static text controls displays lines of text. Static text is typically used to label
other controls, provide directions to the user, or indicate values associated with
a slider. Users cannot change static text interactively and there is no way to
invoke the callback routine associated with it.

Sliders
Sliders accept numeric input within a specific range by enabling the user to
move a sliding bar. Users move the bar by pressing the mouse button and
dragging the slide, by clicking in the trough, or by clicking an arrow. The
location of the bar indicates a numeric value.

Slider Orientation
You can orient the slider either horizontally or vertically by setting the relative
width and height of the Position property:

• Horizontal slider – width is greater than height.

• Vertical slider – height is greater than width.

User Interface Controls

1-31

For example, these settings create a horizontal slider.

Current Value, Range, and Step Size
There are four properties that control the range and step size of the slider:

• Value – contains the current value of the slider.

• Max – defines the maximum slider value.

• Min – defines the minimum slider value.

• SliderStep – specifies the size of a slider step with respect to the range.

The Value property contains the numeric value of the slider. You can set this
property to specify an initial condition and query it in the slider’s callback to
obtain the value set by the user. For example, your callback could contain the
statement.

slider_value = get(handles.slider1,'Value');

The Max and Min properties specify the slider’s range (Max - Min).

The SliderStep property controls the amount the slider Value property
changes when you click the mouse on the arrow button or on the slider trough.
Specify SliderStep as a two-element vector. The default, [0.01 0.10], provides
a 1 percent change for clicks on an arrow and a 10 percent change for clicks in
the trough. The actual step size is a function of the slider step and the slider
range.

1 Getting Started with GUIDE

1-32

Designing a Slider
Suppose you want to create a slider with the following behavior:

• Slider range = 5 to 8

• Arrow step size = 0.4

• Trough step size = 1

• Initial value = 6.5

From these values you need to determine and set the Max, Min, SliderStep, and
Value properties. You can do this by adding the following code to the
initialization section of the application M-file (after the creation of the handles
structure).

slider_step(1) = 0.4/(8-5);
slider_step(2) = 1/(8-5);
set(handles.slider1,'sliderstep',slider_step,...

 'max',8,'min',5,'Value',6.5)

You can also assign the slider properties using the Property Inspector:

• SliderStep, X .133
• SliderStep, Y .333
• Max 8
• Min 5
• Value 6.5

Triggering Callback Execution
The slider callback is executed when the user releases the mouse button.

Frames
Frames are boxes that enclose regions of a figure window. Frames can make a
user interface easier to understand by visually grouping related controls.
Frames have no callback routines associated with them and only uicontrols can
appear within frames (axes cannot).

Placing Components on Top of Frames
Frames are opaque. If you add a frame after adding components that you want
to be positioned within the frame, you need to bring forward those components.

User Interface Controls

1-33

Use the Bring to Front and Send to Back operations in the Layout menu for
this purpose.

List Boxes
List boxes display a list of items and enable users to select one or more items.

The String property contains the list of strings displayed in the list box. The
first item in the list has an index of 1.

The Value property contains the index into the list of strings that correspond
to the selected item. If the user selects multiple items, then Value is a vector of
indices.

By default, the first item in the list is highlighted when the list box is first
displayed. If you do not want any item highlighted, then set the Value property
to empty, [].

The ListboxTop property defines which string in the list displays as the top
most item when the list box is not large enough to display all list entries.
ListboxTop is an index into the array of strings defined by the String property
and must have a value between 1 and the number of strings. Noninteger values
are fixed to the next lowest integer.

Single or Multiple Selection
The values of the Min and Max properties determine whether users can make
single or multiple selections:

• If Max – Min > 1, then list boxes allow multiple item selection.

• If Max – Min <= 1, then list boxes do not allow multiple item selection.

Selection Type
Listboxes differentiate between single and double clicks on an item and set the
figure SelectionType property to normal or open accordingly. See Triggering
Callback Execution for information on how to program multiple selection.

Triggering Callback Execution
MATLAB evaluates the list box’s callback after the mouse button is released or
a keypress event (including arrow keys) that changes the Value property (i.e.,
any time the user clicks on an item, but not when clicking on the list box

1 Getting Started with GUIDE

1-34

scrollbar). This means the callback is executed after the first click of a
double-click on a single item or when the user is making multiple selections.

In these situations, you need to add another component, such as a Done button
(push button) and program its callback routine to query the list box Value
property (and possibly the figure SelectionType property) instead of creating
a callback for the list box. If you are using the automatically generated
application M-file option, you need to either:

• Set the list box Callback property to the empty string ('') and remove the
callback subfunction from the application M-file.

• Leave the callback subfunction stub in the application M-file so that no code
executes when users click on list box items.

The first choice is best if you are sure you will not use the list box callback and
you want to minimize the size and efficiency of the application M-file. However,
if you think you may want to define a callback for the list box at some time, it
is simpler to leave the callback stub in the M-file.

See The Listbox Callback for an example of how to program a list box to open
files.

List Box Examples
See the following examples for more information on using list boxes:

• List Box Directory Reader – shows how to creates a GUI that displays the
contents of directories in a list box and enables users to open a variety of file
types by double-clicking on the filename.

• Accessing Workspace Variables from a List Box – shows how to access
variables in the MATLAB base workspace from a list box GUI.

Popup Menus
Popup menus open to display a list of choices when users press the arrow.

The String property contains the list of string displayed in the popup menu.

The Value property contains the index into the list of strings that correspond
to the selected item.

User Interface Controls

1-35

When not open, a popup menu displays the current choice, which is determined
by the index contained in the Value property. The first item in the list has an
index of 1.

Popup menus are useful when you want to provide users with a number of
mutually exclusive choices, but do not want to take up the amount of space that
a series of radio buttons requires.

Programming the Popup Menu
You can program the popup menu callback to work by checking only the index
of the item selected (contained in the Value property) or you can obtain the
actual string contained in the selected item.

This callback checks the index of the selected item and uses a switch statement
to take action based on the value. If the contents of the popup menu is fixed,
then you can use this approach.

function varargout = popupmenu1_Callback(h,eventdata,handles,varargin)

val = get(h,'Value');

switch val

case 1

% The user selected the first item

case 2

% The user selected the second item

% etc.

This callback obtains the actual string selected in the popup menu. It uses the
value to index into the list of strings. This approach may be useful if your
program dynamically loads the contents of the popup menu based on user
action and you need to obtain the selected string. Note that it is necessary to
convert the value returned by the String property from a cell array to a string.

function varargout = popupmenu1_Callback(h,eventdata,handles,varargin)

val = get(h,'Value');

string_list = get(h,'String');

selected_string = string_list{val}; % convert from cell array to string

% etc.

Enabling or Disabling Controls
You can control whether a control responds to mouse button clicks by setting
the Enable property. Controls have three states:

1 Getting Started with GUIDE

1-36

• on – The control is operational

• off – The control is disabled and its label (set by the string property) is
grayed out.

• inactive – The control is disabled, but its label is not grayed out.

When a control is disabled, clicking on it with the left mouse button does not
execute its callback routine. However, the left-click causes two other callback
routines to execute:

• First the figure WindowButtonDownFcn callback executes

• Then the control’s ButtonDownFcn callback executes

A right mouse button click on a disabled control posts a context menu, if one is
defined for that control. See the Enable property description for more details.

Axes
Axes enable your GUI to display graphics (e.g., graphs and images). Like all
graphics objects, axes have properties that you can set to control many aspects
of its behavior and appearance. See Axes Properties for general information on
axes objects.

Axes Callbacks
Axes are not uicontrol objects, but can be programmed to execute a callback
when users click a mouse button in the axes. Use the axes ButtonDownFcn
property to define the callback.

Plotting to Axes in GUIs
GUIs that contain axes should ensure the Command-line accessibility option
in the Application Options dialog is set to Callback (the default). This enables
you to issue plotting commands from callbacks without explicitly specifying the
target axes. See Command-Line Accessibility for more information about how
this option works.

GUIs with Multiple Axes
If a GUI has multiple axes, you should explicitly specify which axes you want
to target when you issue plotting commands. You can do this using the axes
command and the handles structure. For example,

axes(handles.axes1)

User Interface Controls

1-37

makes the axes whose Tag property is axes1 the current axes, and therefore the
target for plotting commands. You can switch the current axes whenever you
want to target a different axes. See GUI with Multiple Axes for and example
that uses two axes.

Figure
Figures are the windows that contain the GUI you design with the Layout
Editor. See the description of figure properties for information on what figure
characteristics you can control.

Displaying Plots in a Separate Figure
To prevent a figure from becoming the target of plotting commands issued at
the command line or by other GUIs, you can set the HandleVisibility and
IntegerHandle properties to off. However, this means the figure is also
hidden from plotting commands issued by your GUI.

To issue plotting commands from your GUI, you should create a figure and
axes, saving the handles (you can store them in the handles structure). You
then parent the axes to the figure and then parent the graphics objects created
by the plotting command to the axes. The following steps summarize this
approach:

• Save the handle of the figure when you create it.

• Create an axes, save its handle, and set its Parent property to the figure
handle.

• Create the plot, and save the handles, and set their Parent properties to the
handle of the axes.

The following code illustrates these steps.

fHandle = figure('HandleVisibility','off','IntegerHandle','off',...

'Visible','off');

aHandle = axes('Parent',fHandle);

pHandles = plot(PlotData,'Parent',aHandle);

set(fHandle,'Visible','on')

Note that not all plotting commands accept property name/property value
specifications as arguments. Consult the reference page for the specific
command to see what arguments you can specify.

1 Getting Started with GUIDE

1-38

2

MATLAB GUIs

Introduction . 2-2

Creating GUIs with GUIDE 2-3
GUI Development Environment 2-3

Editing Version 5 GUIs with Version 6 GUIDE 2-6

Selecting GUIDE Application Options 2-8
Configuring the Application M-File 2-8

Resize Behavior 2-10
Making Your GUI Nonresizable 2-10
Allowing Proportional GUI Resizing 2-10
User-Specified Resize Operation 2-11

Command-Line Accessibility 2-12
Access Options 2-12
Figure Properties That Control Access 2-12
Using findobj . 2-13

Electing to Generate Only the FIG-File 2-14

The Generated M-File 2-15
Callback Function Names and Arguments 2-15
Application Allows Only One Instance to Run 2-18
Using the System Background Colors 2-18
Waiting for User Input 2-20

Renaming Application Files and Tags 2-21
Using Save As 2-21
Getting Everything Right 2-21
Changing Component Tag Properties 2-21
Changing the Name of Callback Subfunctions 2-22
Changing the Name of the M-File and FIG-File 2-24

2 MATLAB GUIs

2-2

Introduction
A graphical user interface (GUI) is a user interface built with graphical objects,
such as buttons, text fields, sliders, and menus. In general, these objects
already have meanings to most computer users. For example, when you move
a slider, a value changes; when you press an OK button, your settings are
applied and the dialog box is dismissed. Of course, to leverage this built-in
familiarity, you must be consistent in how you use the various GUI-building
components.

Applications that provide GUIs are generally easier to learn and use since the
person using the application does not need to know what commands are
available or how they work. The action that results from a particular user
action can be made clear by the design of the interface.

The sections that follow describe how to create GUIs with MATLAB. This
includes laying out the components, programming them to do specific things in
response to user actions, and saving and launching the GUI; in other words,
the mechanics of creating GUIs. This documentation does not attempt to cover
the “art” of good user interface design, which is an entire field unto itself.
Topics covered in this section include:

• Creating GUIs with GUIDE – an overview of the GUI creation process in
MATLAB.

• Editing Version 5 GUIs with Version 6 GUIDE – suggestions on how to
proceed if you want to edit your pre-version 6 GUI with GUIDE.

• Selecting GUIDE Application Options – discussion of the various options you
can select for your GUI implementation.

Creating GUIs with GUIDE

2-3

Creating GUIs with GUIDE
MATLAB implements GUIs as figure windows containing various styles of
uicontrol objects. You must program each object to perform the intended action
when activated by the user of the GUI. In addition, you must be able to save
and launch your GUI. All of these tasks are simplified by GUIDE, MATLAB’s
graphical user interface development environment.

GUI Development Environment
The process of implementing a GUI involves two basic tasks:

• Laying out the GUI components

• Programming the GUI components

GUIDE primarily is a set of layout tools. However, GUIDE also generates an
M-file that contains code to handle the initialization and launching of the GUI.
This M-file provides a framework for the implementation of the callbacks – the
functions that execute when users activate components in the GUI.

The Implementation of a GUI
While it is possible to write an M-file that contains all the commands to lay out
a GUI, it is easier to use GUIDE to lay out the components interactively and to
generate two files that save and launch the GUI:

• A FIG-file – contains a complete description of the GUI figure and all of its
children (uicontrols and axes), as well as the values of all object properties.

• An M-file – contains the functions that launch and control the GUI and the
callbacks, which are defined as subfunctions. This M-file is referred to as the
application M-file in this documentation.

Note that the application M-file does not contain the code that lays out the
uicontrols; this information is saved in the FIG-file.

The following diagram illustrates the parts of a GUI implementation.

2 MATLAB GUIs

2-4

Features of the GUIDE-Generated Application M-File
GUIDE simplifies the creation of GUI applications by automatically
generating an M-file framework directly from your layout. You can then use
this framework to code your application M-file. This approach provides a
number of advantages:

• The M-file contains code to implement a number of useful features (see
Configuring Application Options for information on these features).

• The M-file adopts an effective approach to managing object handles and
executing callback routines (see Creating and Storing the Object Handle
Structure for more information).

• The M-files provides a way to manage global data (see Managing GUI Data
for more information).

• The automatically inserted subfunction prototypes for callbacks ensure
compatibility with future releases. For more information, see Generating
Callback Function Prototypes for information on syntax and arguments.

outing.m

outing.fig

Code file

GUI figure

Uicontrols

Resource file

Launch GUI

Execute Callback

Creating GUIs with GUIDE

2-5

You can elect to have GUIDE generate only the FIG-file and write the
application M-file yourself. Keep in mind that there are no uicontrol creation
commands in the application M-file; the layout information is contained in the
FIG-file generated by the Layout Editor.

Beginning the Implementation Process
To begin implementing your GUI, proceed to the following sections:

• Getting Started with GUIDE – the basics of using GUIDE.

• Selecting GUIDE Application Options – set both FIG-file and M-file options.

• Using the Layout Editor – begin laying out the GUI.

• Understanding the Application M-File – discussion of programming
techniques used in the application M-file.

• Application Examples – a collection of examples that illustrate techniques
which are useful for implementing GUIs.

2 MATLAB GUIs

2-6

Editing Version 5 GUIs with Version 6 GUIDE
In MATLAB Version 5, GUIDE saved GUI layouts as MAT-file/M-file pairs. In
MATLAB Version 6, GUIDE saves GUI layouts as FIG-files. GUIDE also
generates an M-file to program the GUI callbacks, however, this M-file does not
contain layout code.

Use the following procedure to edit a Version 5 GUI with Version 6 GUIDE:

1 Display the Version 5 GUI.

2 Obtain the handle of the GUI figure. If the figure’s handle is hidden (i.e., the
figure’s HandleVisibility property is set to off), set the root
ShowHiddenHandles property to on.

set(0,'ShowHiddenHandles','on')

Then get the handle from the root’s Children property.

h = get(0,'Children');

This statement returns the handles of all figures that exist when you issue
the command. For simplicity, ensure that the GUI is the only figure
displayed.

3 Pass the handle as an argument to the guide command.

guide(h)

Saving the GUI in Version 6 GUIDE
When you save the edited GUI with Version 6 GUIDE, MATLAB creates a
FIG-file that contains all the layout information. The original MAT-file/M-file
combination is no longer used. To display the revised GUI, use the open or
hgload command to load the newly created FIG-file, or you can run the
application M-file generated by GUIDE.

Updating Callbacks
Ensure that the Callback properties of the uicontrols in your GUI are set to the
desired callback string or callback M-file name when you save the FIG-file. If
your Version 5 GUI used an M-file that contained a combination of layout code
and callback routines, then you should restructure the M-file to contain only
the commands needed to initialize the GUI and the callback functions. The

Editing Version 5 GUIs with Version 6 GUIDE

2-7

application M-file generated by Version 6 GUIDE can provide a model of how
to restructure your code.

Note By default, GUIDE generates an application M-file having the same
name as the FIG-file saved with the Layout Editor. When you activate a GUI
from the Layout Editor, GUIDE attempts to execute this M-file to launch the
GUI.

2 MATLAB GUIs

2-8

Selecting GUIDE Application Options
Issuing the guide command displays an empty Layout Editor with an untitled
figure. Before adding components to the layout, you should configure the GUI
using the GUIDE Application Options dialog. Access the dialog by selecting
Application Options... from the Layout Editor Tools menu.

Configuring the Application M-File
The GUIDE Application Options dialog enables you to select whether you want
GUIDE to generate only a FIG-file for your layout or both a FIG-file and its
companion application M-file. You can also select a number of different
behaviors for your GUI.

The following section describes the options in this dialog:

• Resize behavior

• Command-line accessibility

• Generate .fig file only

Selecting GUIDE Application Options

2-9

• Generate .fig file and .m file

• Generate callback function prototypes

• Application allows only one instance to run

• Use system color scheme for background

• Function does not return until application window dismissed

2 MATLAB GUIs

2-10

Resize Behavior
You can control whether users can resize the figure window containing your
GUI and how MATLAB handles resizing. GUIDE provides three options:

• Non-resizable – users cannot change the window size (default).

• Proportional – MATLAB automatically rescales the components in the GUI
in proportion to the new figure window size.

• User-specified – program the GUI to behave in a certain way when users
resize the figure window.

The first two approaches simply set properties appropriately and require no
other action. User-specified resizing requires you to write a callback routine
that recalculate sizes and positions of the components based on the new figure
size. The following sections discuss each approach.

Making Your GUI Nonresizable
Certain types of GUIs are typically nonresizable. Warning and simple question
dialog boxes, particularly modal windows, are usually not resizable. After a
simple interaction, users dismiss these GUIs so changing their size is not
necessary.

Property Settings
GUIDE sets the following properties to create nonresizable GUIs:

• Units properties of the figure, axes, and uicontrols should be set to
characters (the Layout Editor default) so the GUI displays at the correct
size on different computers.

• Resize figure property is set to off.

• ResizeFcn figure property does not require a callback routine.

Allowing Proportional GUI Resizing
Use this approach if you want to allow users to resize the GUI and are satisfied
with a behavior that simply scales each component’s size and relative position
in proportion to the new figure size. Note that the font size of component labels
does not resize and, if the size is reduced enough, these labels may become
unreadable.

Resize Behavior

2-11

This approach works well with simple GUI tools and dialog boxes that apply
settings without closing. Users may want to resize these windows to better fit
them on the screen, but the precise layout of the GUI is not critical to its
function.

Property Settings
GUIDE sets the following properties to create proportional resizing GUIs:

• Units properties of the axes and uicontrols should be set to normalized so
the these components resize and reposition as the figure window changes
size.

• Units property of the figure should be set to characters so the GUI displays
at the correct size at runtime.

• Resize figure property set to on (the default).

• ResizeFcn figure property does not require a callback routine.

User-Specified Resize Operation
You can create GUIs that accommodate resizing, while at the same time
maintain the appearance and usability of your original design by programming
the figure ResizeFcn callback routine. This callback routine essentially
recalculates the size and position of each component based on the new figure
size.

This approach to handling figure resizing is used most typically in GUI-based
applications that require user interaction on an ongoing basis. Such an
application might contain axes for displaying data and various components
whose position and size are critical to the successful use of the interface.

Property Settings
GUIDE sets the following properties to implement this style of GUI:

• Units properties of the figure, axes, and uicontrols should generally be set to
characters so the GUI displays at the correct size at runtime.

• Resize figure property set to on (the default).

• ResizeFcn figure property requires a callback routine to handle resizing.

See The Address Book Resize Function for an example of a user-written resize
function.

2 MATLAB GUIs

2-12

Command-Line Accessibility
When MATLAB creates a graph, the figure and axes are included in the list of
children of their respective parents and their handles are available through
commands such as findobj, set, and get. If you issue another plotting
command, the output is directed to the current figure and axes.

GUIs are also created in figure windows. Generally, you do not want GUI
figures to be available as targets for graphics output, since issuing a plotting
command could direct the output to the GUI figure, resulting in the graph
appearing in the middle of the GUI.

In contrast, if you create a GUI that contains an axes and you want commands
entered in the command window to display in this axes, you should enable
command-line access.

Access Options
The GUIDE Application Options dialog provides three options to control user
access:

• Callback – the figure and axes are visible only from within callbacks
(default).

• Off – prevent command-line access to the GUI figure.

• On – enable command-line access to the GUI figure.

• User-specified – the GUI uses the values you set for the figure
HandleVisibility and IntegerHandle properties.

Figure Properties That Control Access
There are two figure properties that control command-line accessibility of the
figure:

• HandleVisibility – determines whether the figure’s handle is visible to
commands that attempt to access the current figure.

• IntegerHandle – determines if a figure’s handle is an integer or a floating
point value.

Command-Line Accessibility

2-13

HandleVisibility – Callback
Setting HandleVisibility to callback causes handles to be visible from
within callback routines or functions invoked by callback routines, but not from
within functions invoked from the command line.This provides a means to
protect GUIs from command-line users, while allowing callback routines to
have complete access to object handles. You should use this option if your GUI
contains axes.

HandleVisibility – Off
Setting the HandleVisibility property to off removes the handle of the figure
from the list of root object children so it will not become the current figure
(which is the target for graphics output). The handle remains valid, however,
so a command that specifies the handle explicitly still works (such as
close(1)). However, you cannot use commands that operate only on the
current figure or axes. These commands include xlabel, ylabel, zlabel,
title, gca, and gcf.

HandleVisibility – On
Handles are always visible when HandleVisibility is on.

IntegerHandle
Setting the IntegerHandle property to off causes MATLAB to assign
nonreusable real-number handles (e.g., 67.0001221...) instead of integers. This
greatly reduces the likelihood of someone accidently performing an operation
on the figure.

Using findobj
When you set the Command-line accessibility to off, the handle of the GUI
figure is hidden. This means you cannot use findobj to located the handles of
the uicontrols in the GUI. As an alternative, the application M-file creates an
object handle structure that contains the handles of each uicontrol in the GUI
and passes this structure to subfunctions.

2 MATLAB GUIs

2-14

Electing to Generate Only the FIG-File
Select Generate .fig file only in the GUIDE Application Options dialog if you
do not want GUIDE to generate an application M-file. When you save the GUI
from the Layout Editor, GUIDE creates a FIG-file, which you can redisplay
using the open or hgload command.

When you select this option, you must set the Callback property of each
component in your GUI to a string that MATLAB can evaluate and perform the
desired action. This string can be an expression or the name of an M-file.

Select this option if you want to follow a completely different programming
paradigm than that generated by the application M-file.

The Generated M-File

2-15

The Generated M-File
Select Generate .fig file and .m file in the GUIDE Application Options dialog
if you want GUIDE to create both the FIG-file and the application M-file (this
is the default). Once you have selected this option, you can select any of the
following items in the frame to configure the M-file:

• Generate callback function prototypes

• Application allows only one instance to run

• Use system color scheme for background

• Function does not return until application window dismissed

Callback Function Names and Arguments
When you select Generate callback function prototypes in the GUIDE
Application Options dialog, GUIDE adds a subfunction to the application
M-file for any component you add to the GUI (note that frame and static text
components do not use their Callback property and therefore have no
subfunction). You must then write the code for the callback in this subfunction.

GUIDE also adds a subfunction whenever you edit a callback routine from the
Layout Editor’s right-click context menu and when you add menus to the GUI
using the Menu Editor.

Naming Callback Subfunctions
When you add a component to your GUI layout, GUIDE assigns a value to its
Tag property, which is then used to generate the name of the callback.

For example, the first push button you add to the layout is tagged pushbutton1.
When generating the application M-file, GUIDE adds a callback subfunction
called pushbutton1_Callback. If you define a ButtonDownFcn for the same
push button, GUIDE names its subfunction pushbutton1_ButtonDownFcn.

Callback Function Syntax
The callback function syntax is of the form

function varargout = objectTag_Callback(h,eventdata,handles,varargin)

2 MATLAB GUIs

2-16

The arguments are listed in the following table.

For example, if you create a layout having a push button whose Tag property is
set to pushbutton1, then GUIDE generates this subfunction header in the
application M-file.

function varargout = pushbutton1_Callback(h,eventdata,handles,varargin)

Assigning the Callback Property String
When you first add a component to your GUI layout, its Callback property is
set to the string <automatic>. This string signals GUIDE to replace it with one
that calls the appropriate callback subfunction in the application M-file when
you save or activate the GUI. For example, GUIDE sets the Callback property
for pushbutton1 uicontrol to

my_gui('pushbutton1_Callback',gcbo,[],guidata(gcbo))

where:

• my_gui – is the name of the application M-file.

• pushbutton1_Callback – is the name of the callback routine subfunction
defined in my_gui.

• gcbo – is a command that returns the name of the callback object (i.e.,
pushbutton1).

• [] – is a place holder for the currently unused eventdata argument.

• guidata(gcbo) – returns the handles structure.

Callback Function Arguments

h The handle of the object whose callback is executing.

eventdata Empty, reserved for future use.

handles A structure containing the handles of all components in the
GUI whose fieldnames are defined by the object’s Tag
property. Can also be used to pass data to other callback
functions or the main program.

varargin A variable-length list of arguments that you want to pass to
the callback function.

The Generated M-File

2-17

See Callback Function Syntax for more information on callback function
arguments and Renaming Application Files and Tags for more information on
how to change the names used by GUIDE.

Adding Arguments to the Callback – varargin
Callback subfunctions added by GUIDE require certain arguments, but have a
variable-length argument list. Since the last argument is varargin, you can
add whatever arguments you want to the subfunction. To pass the additional
arguments, edit the Callback property’s string to include the arguments. For
example, if the string added automatically to the Callback property is,

my_gui('pushbutton1_Callback',gcbo,[],guidata(gcbo))

change it using the Property Inspector to include the additional arguments.
For example, changing the Callback property to,

my_gui('pushbutton1_Callback',gcbo,[],guidata(gcbo),arg1,arg2)

in the Property Inspector:

The subfunction, pushbutton1_Callback has the syntax

varargout = pushbutton1_Callback(h,eventdata,handles,varargin)

so you can pass the extra input arguments without changing its function
definition line.

2 MATLAB GUIs

2-18

Defining Output Arguments – varargout
GUIDE defines callbacks to return a variable number of arguments using
varargout. See Passing Variable Numbers of Arguments for general
information on using varargin and varargout.

Application Allows Only One Instance to Run
This option allows you to select between two behaviors for the GUI figure:

• Allow MATLAB to display only one instance of the GUI at a time.

• Allow MATLAB to display multiple instances of the GUI.

If you allow only one instance, MATLAB reuses the existing GUI figure
whenever the command to launch the GUI is issued. If a GUI already exists,
MATLAB brings it to the foreground rather than creating a new figure.

If you uncheck this option, MATLAB creates a new GUI figure whenever you
issue the command to launch the GUI.

Code in the Application M-File
GUIDE implements this feature by generating code in the application M-file
that uses the openfig command. The reuse or new string specifies one instance
or multiple instances of the GUI figure.

fig = openfig(mfilename,'reuse');

or

fig = openfig(mfilename,'new');

Note Ensure that you have only one occurrence of openfig in your
application M-file, including in commented lines.

Using the System Background Colors
The color used for GUI components varies on different computer systems. This
option enables you to make the figure background color the same as the default
uicontrol background color, which is system dependent.

The Generated M-File

2-19

If you select Use system color scheme for background (the default), GUIDE
changes the figure background color to match the color of the GUI components.

The following figures illustrate the results with (right) and without (left)
system color matching.

Code in the Application M-File
GUIDE implements this feature by generating code in the application M-file
that sets the figure background color to the default uicontrol background color,
which is system dependent.

% Use system color scheme for figure:
set(fig,'Color',get(0,'DefaultUicontrolBackgroundColor'));

Note Ensure that you have only one occurrence of this statement in your
application M-file, including in commented lines.

2 MATLAB GUIs

2-20

Waiting for User Input
The GUIDE application option,

Function does not return until application window dismissed

generates an application M-file that is designed to wait for user input. It does
this by calling uiwait, which blocks further execution of the M-file.

While execution waits, MATLAB processes the event queue. This means that
any user-interactions with the GUI (such as clicking a push button) can invoke
callback routines, but the execution stream always returns to the application
M-file until one of two events occurs:

• The GUI figure is deleted.

• A callback for an object in the GUI figure executes a uiresume command.

This feature provides a way to block the MATLAB command line until the user
responds to the dialog box, but at the same time, allows callback routines to
execute. When used in conjunction with a modal dialog, you can restrict user
interaction to the dialog.

See Launching a Dialog to Confirm an Operation for an example that uses this
option.

Code in the Application M-File
GUIDE implements this feature by generating code in the application M-file
that uses the uiwait command

% Wait for callbacks to run and window to be dismissed:
uiwait(fig);

where fig is the handle of the GUI figure.

Note Ensure that you have only one occurrence of uiwait in your application
M-file, including in commented lines.

Renaming Application Files and Tags

2-21

Renaming Application Files and Tags
It is often desirable to use descriptive names for component Tag properties and
callback subfunction names. GUIDE assigns a value to the Tag property of
every component you insert in your layout (e.g., pushbutton1) and then uses
this string to name the callback subfunction (e.g., pushbutton1_Callback).

It is generally a good practice to select the tags and filenames before activating
or saving your GUI for the first time.

Using Save As
When you select Save As from the Layout Editor File menu, GUIDE also
renames the application M-file and resets the Callback properties to properly
execute the callbacks.

Note Since GUIDE uses the Tag property to name functions and structure
fields, the Tag you select must be a valid MATLAB variable name. Use
isvarname to determine if the string you want to use is valid.

Getting Everything Right
If you make changes after GUIDE has generated the M-file and FIG-file, you
must ensure that your code incorporates these changes. This section describes:

• Changing component tag properties

• Changing the name of callback subfunctions

• Changing the name of the M-file and FIG-file

Changing Component Tag Properties
Guide automatically assigns a string to the uicontrol Tag property and uses
this string to:

• Construct the name of the generated callback subfunctions (e.g.,
tag_Callback)

• Add a field to the handles structure containing the handle of the object (e.g.,
handles.tag)

2 MATLAB GUIs

2-22

If you change the Tag after GUIDE generates the callback subfunction, GUIDE
does not generate a new subfunction. However, since the handles structure is
created when you run the application M-file to launch the GUI, GUIDE uses
the new Tag to name the field that contains the object’s handle.

Problems Caused by Changing Tags
Changing the Tag can cause program errors when you have referenced an
objects handle. For example, the following statement,

file_list = get(handles.listbox1,'String');

gets the value of the String property from the list box whose Tag is listbox1.
If you change the list box’s Tag to file_listbox, subsequent instantiations of
the GUI would require you to change the statement to

file_list = get(handles.file_listbox,'String');

Avoiding Problems
The best approach is to set the Tag property on components when you add them
to the layout. If you do change a Tag after generating the application M-file and
want to rename callback subfunctions to maintain the consistent naming used
by GUIDE, you should:

• Correct any out of date reference to the handles structure.

• See Changing the Name of Callback Subfunctions and follow the procedure
described there.

Changing the Name of Callback Subfunctions
When you save or activate your GUI, GUIDE replaces the value of any
Callback property that is set to <automatic> with a string that executes the
callback subfunction in the application M-file.

For example, when first inserted into the layout, the sixth push button’s
Callback property looks like this:

Renaming Application Files and Tags

2-23

When you save or activate the figure, GUIDE changes <automatic> to

untitled('pushbutton6_Callback',gcbo,[],guidata(gcbo))

If you want to change the name of a callback, you must also change the string
assigned to the Callback property. This picture shows what you must change
the string to after you rename the callback subfunction to
Closebutton_Callback.

2 MATLAB GUIs

2-24

GUIDE generates similar strings for the other callback properties.

Changing the Name of the M-File and FIG-File
GUIDE gives the GUI FIG-file and its associated application M-file the same
root name; only the extensions differ. When you execute the M-file to launch
the GUI, the following statement uses the mfilename command to determine
the name of the FIG-file from the name of the M-file.

fig = openfig(mfilename,'reuse');

If the FIG-file name differs from the M-file name, it is not called correctly.

3

GUIDE Layout Tools

GUI Layout Tools 3-2

Laying Out GUIs – The Layout Editor 3-4

Aligning Components in the Layout Editor 3-10

Setting Component Properties – The Property Inspector 3-16

Viewing the Object Hierarchy – The Object Browser . . 3-18

Creating Menus – The Menu Editor 3-19

Saving the GUI 3-29

3 GUIDE Layout Tools

3-2

GUI Layout Tools
MATLAB includes a set of layout tools that simplify the process of creating
graphical user interfaces (GUIs). These tools include:

• Layout Editor – add and arrange objects in the figure window.

• Alignment Tool – align objects with respect to each other.

• Property Inspector – inspect and set property values.

• Object Browser – observe a hierarchical list of the Handle Graphics objects
in the current MATLAB session.

• Menu Editor – create menus for the window menu bar and context menus for
any component in your layout.

Access these tools from the Layout Editor. To start the Layout Editor, use the
guide command. For example,

guide

displays an empty layout.

To load an existing GUI for editing, type (the .fig is not required)

guide filename.fig

or use Open... from the File menu on the Layout Editor.

The following picture shows the GUIDE Layout Editor.

GUI Layout Tools

3-3

Component

Palette

Alignment Tool Menu Editor Property Inspector Figure ActivatorObject Browser

Layout Area

Figure Resize Tab

Undo

Redo

3 GUIDE Layout Tools

3-4

Laying Out GUIs – The Layout Editor
The Layout Editor enables you to select GUI components from a palette and
arrange them in a figure window. The component palette contains the GUI
components (uicontrol objects) that are available for you to use in your user
interface. The layout area becomes the figure window upon activation.

Placing an Object In the Layout Area
Select the type of component you want to place in your GUI by clicking on it in
the component palette. The cursor changes to a cross, which you can then use
to select the position of the upper-left corner of the control, or you can set the
size of the control by clicking in the layout area and then dragging the cursor
to the lower-right corner before releasing the mouse button.

Laying Out GUIs – The Layout Editor

3-5

Activating the Figure
You can generate a functioning GUI by activating the figure you have designed
with the Layout Editor. Activate the figure by selecting the Activate Figure
item in the Tools menu or by clicking figure activator in the toolbar.

When you activate a figure, the following occurs:

• GUIDE first saves both the M-file and FIG-file. If you have not yet saved the
layout, GUIDE opens a Save As dialog so you can select a name for the M-file
GUIDE is going to generate. GUIDE then saves the companion FIG-file with
the same name as the M-file, but with a .fig extension.

• If an M-file with the same name exists, GUIDE prompts you to replace or
append to the existing code in the M-file.

Replace – writes over the existing file.

Append – inserts new callbacks for components added since the last save
and make changes to the code based on change made from the Application
Options dialog.

• MATLAB executes the M-file to display the GUI. The options specified in the
Application Options dialog are functional in the GUI. Callbacks that you
have not yet implemented, but that GUIDE inserted as stubs in the M-file,
simply return a message to the command line indicating they are not yet
implemented.

Note GUIDE automatically saves both the application M-file and the
FIG-file when you activate the GUI.

3 GUIDE Layout Tools

3-6

Saving the Layout
Once you have created the GUI layout, you can save it as a FIG-file (a binary
file that saves the contents of a figure) using the Save or Save As item from the
File menu. GUIDE creates the application M-file automatically when you save
or activate the figure.

Displaying Your GUI
You can display the GUI figure using the openfig, open, or hgload command.
These commands load FIG-files into the MATLAB workspace.

Generally, however, you launch your GUI by executing the application M-file
that is generated by GUIDE. This M-file contains the commands to load the
GUI and provides a framework for the component callbacks. See Configuring
the Application M-File for more information.

Layout Editor Preferences
You can set preferences for the Layout Editor by selecting Preferences from
the File menu.

Laying Out GUIs – The Layout Editor

3-7

Layout Editor Context Menus
When working in the Layout Editor, you can select an object with the left
mouse button and then click the right button to display a context menu. In
addition to containing items found on the Layout Editor window menu, this
context menu enables you to add a subfunction to your application M-file for
any of the additional object properties that define callback routines.

Figure Context Menus
The following picture shows the context menu associated with figure objects.
Note that all the properties that define callback routines for figures are listed
in the submenu.

3 GUIDE Layout Tools

3-8

GUI Component Context Menus
The following picture shows the context menu associated with uicontrol
objects. All the properties that define callback routines for this object are listed
in the lower panel. Note that while axes do not have CallBack properties, you
can program the ButtonDownFcn property callback to execute whenever the
user clicks the mouse over the axes.

Laying Out GUIs – The Layout Editor

3-9

3 GUIDE Layout Tools

3-10

Aligning Components in the Layout Editor
You can select and drag any component or group of components within the
layout area. In addition, the Layout Editor provides a number of features that
facilitate more precise alignment of objects with respect to one another:

• Alignment Tool – align and distribute groups of components.

• Grid and Rulers – align components on a grid with optional snap to grid.

• Guide Lines – vertical and horizontal snap-to guides at arbitrary locations.

• Bring to Front, Send to Back, Bring Forward, Send Backward – control the
front to back arrangement of components.

Aligning Groups of Components – The Alignment
Tool
The Alignment Tool enables you to position objects with respect to each other
and to adjust the spacing between selected objects. The specified alignment
operations apply to all components that are selected when you press the Apply
button.

The alignment tool provides two types of alignment operations:

Aligning Components in the Layout Editor

3-11

• Align – align all selected components to a single reference line.

• Distribute – space all selected components uniformly with respect to each
other.

Both types of alignment can be applied in the vertical and horizontal
directions. Note that, in many cases, it is better to apply alignments
independently to the vertical or to the horizontal using two separate steps.

Align Options
There are both vertical and horizontal align options. Each option aligns
selected components to a reference line, which is determined by the bounding
box that encloses the selected objects. For example, the following picture of the
layout area shows the bounding box (indicated by the dashed line) formed by
three selected push buttons.

Bounding box for the
selected components

3 GUIDE Layout Tools

3-12

All of the align options (vertical top, center, bottom and horizontal left, center,
right) place the selected components with respect to corresponding edge (or
center) of this bounding box.

Distribute Options
Distributing components adds equal space between all components in the
selected group. The distribute options operate in two different modes:

• Equally space selected components within the bounding box (default)

• Space selected components to a specified value in pixels (check Set spacing
and specify a pixel value)

Both modes enable you to specify how the spacing is measured, as indicated by
the button labels on the alignment tool. These options include spacing
measured with respect to the following edges:

• Vertical – inner, top, center, and bottom

• Horizontal – inner, left, center, and right

Grids and Rulers
The layout area displays a grid and rulers to facilitate component layout. Grid
lines are spaced at 50-pixel intervals by default and you can select from a
number of other values ranging from 10 to 200 pixels. You can optionally
enable snap-to-grid, which causes any object that is moved or resized to within
9 pixels of a grid line to jump to that line. Snap-to-grid works with or without
a visible grid.

Aligning Components in the Layout Editor

3-13

Use the Grid and Rulers dialog (accessed by selecting Grid and Rulers from
the Layout menu) to:

• Control visibility of rulers, grid, and guide lines

• Set the grid spacing

• Enable or disable snap-to-grid

Aligning Components to Guide Lines
The Layout Editor has both vertical and horizontal snap-to guide lines.
Components snap to the line when you move or resize them to within nine
pixels of the line.

Guide lines are useful when you want to establish a reference for component
alignment at an arbitrary location in the Layout Editor.

Creating Guide Lines
To create a guide line, click on the top or left ruler and drag the line into the
layout area.

3 GUIDE Layout Tools

3-14

Front to Back Positioning
The Layout Editor provides four operations that enable you to control the front
to back positioning of objects that overlap:

• Bring to Front – move the selected object(s) in front of nonselected objects
(available from the right-click context menu or the Ctrl+F shortcut).

• Send to Back – move the selected object(s) behind nonselected objects
(available from the right-click context menu or the Ctrl+B shortcut).

• Bring Forward – move the selected object(s) forward by one level (i.e., in front
of the object directly forward of it, but not in front of all objects that overlay
it).

• Send Backward – move the selected object(s) back by one level (i.e., behind
of the object directly in back of it, but not behind of all objects that are behind
it).

Guide lines used for
horizontal alignment

Click on the top or
left ruler and drag
the guide to the
desired position

Guide line used for
vertical alignment

Aligning Components in the Layout Editor

3-15

Access these operations from the Layout menu.

3 GUIDE Layout Tools

3-16

Setting Component Properties – The Property Inspector
The Property Inspector enables you to set the properties of the components in
your layout. It provides a list of all settable properties and displays the current
value. Each property in the list is associated with an editing device that is
appropriate for the values accepted by the particular property. For example, a
color picker to change the BackgroundColor, a popup menu to set FontAngle,
and a text field to specify the Callback string.

See the description of uicontrol properties for information on what values you
can assign to each property and what each property does.

Displaying the Property Inspector
You can display the Property Inspector by:

• Double-clicking on a component in the Layout Editor.

• Selecting Property Inspector in the View menu.

Setting Component Properties – The Property Inspector

3-17

• Right-clicking on a component and selecting Inspect Properties from the
context menu.

3 GUIDE Layout Tools

3-18

Viewing the Object Hierarchy – The Object Browser
The Object Browser displays a hierarchical list of the objects in the figure. The
following illustration shows the figure object and its child objects. The first
uicontrol created was the frame. Next the radio buttons were added. Finally
the axes was positioned next to the frame.

Creating Menus – The Menu Editor

3-19

Creating Menus – The Menu Editor
MATLAB enables you to create two kinds of menus:

• Menubar objects – menus displayed on the figure menubar

• Context menus – menus that pop up when users right-click on graphics
objects

You create both types of menus using the Menu Editor, which you can access
from the Menu Editor item on the Tool menu and from the Layout Editor
toolbar.

These menus are implemented with uimenu and uicontextmenu objects.

Defining Menus for the Menubar
When you create a menu, MATLAB adds it to the figure menubar. You can then
create menu items for that menu. Each item can also have submenu items, and
these items can have submenus, and so on.

Create a new menu

Create a new menu item Create a new context menu

Delete selected item

Move selected menu item

3 GUIDE Layout Tools

3-20

Creating a Menu
The first step is to use the New Menu tool to create a menu.

Specifying Menu Properties
When you click on the menu, text fields appear that allow you to set the Label,
Tag, Separator, and Checked menu properties as well as specifying the
Callback string.

Creating Menus – The Menu Editor

3-21

Adding Items to the Menu
Use the New Menu Item tool to define the menu items that are displayed under
the top-level menu.

New Menu Item adds a submenu to the selected item. For example, if you add
a Print item to the File menu in the illustration above, select File before
clicking on New Menu Item.

Fill in the Label and Tag text fields for the new submenu.

3 GUIDE Layout Tools

3-22

Create additional levels in the same way. For example, the following picture
show an Edit menu having a Copy submenu, which itself has two submenus.

Laying Out Three Menus
The following Menu Editor illustration shows three menus defined for the
figure menubar.

Creating Menus – The Menu Editor

3-23

When you activate the figure, the menus appear in the menubar.

3 GUIDE Layout Tools

3-24

Menu Callbacks
By default, the Callback text field in the Menu Editor is set to the string
<automatic>. This causes GUIDE to add the empty callback subfunction to the
application M-file when you save or activate the GUI. If you change this string.
GUIDE does not add a subfunction for that menu item.

Functions Generated in the Application M-File
While the Menu Editor generates an empty callback subfunction for every
menu and submenu, you may not need to program the callbacks for top-level
menus. This is because clicking on a top-level menu automatically displays the
submenus.

Consider the example from the previous section, as illustrated in the following
picture:

When a user selects the to file item under the Edit menu Copy item, only the
to file callback is required to perform the action.

Suppose, however, that only certain objects can be copied to a file. You can use
the Copy menu’s callback to enable or disable the to file item, depending on
the type of object selected.

See Getting Started Example - Programming the Menu Callbacks for an
example that uses a high-level menu callback to check for the existence of a
graph before enabling the Print menu item.

Syntax of the Callback Subfunction
The application M-file contains all callbacks for the GUI, including the menu
callbacks. All generated callbacks use the same syntax.

Creating Menus – The Menu Editor

3-25

For example, using the Select All menu item from the previous example gives
the following callback string:

MyGui('menu_edit_selectall_Callback',gcbo,[],guidata(gcbo))

where:

• MyGui – is the name of the application M-file that launches the figure
containing the menus.

• menu_edit_selectall_Callback – is the name of the subfunction callback
for the Select All menu item (derived from the Tag specified in the Menu
Editor).

• gcbo – is the handle of the Select All uimenu item.

• [] – is an empty matrix used as a place holder for future use.

• guidata(gcbo) – gets the handles structure from the figure’s application
data

Defining Context Menus
Context menus are displayed when users right-click on the object for which the
menu is defined. The Menu Editor enables you to define context menus and
associate them with objects in the layout.

Tag forms
the name of
the callback

3 GUIDE Layout Tools

3-26

Creating the Parent Menu
All items in a context menu are children of a menu that is not displayed on the
figure menubar. To define the parent menu, select New Context Menu from the
Menu Editor’s toolbar.

Note You must select the Menu Editor’s Context Menus tab before you begin
to define a context menu.

Select the menu and specify the Tag to identify the context menu
(axes_context_menu in this example).

Adding Items to the Context Menu
Create the items that will appear in the context menu using New Menu Item
on the Menu Editor’s toolbar.

Creating Menus – The Menu Editor

3-27

When you select the menu item, the Menu Editor displays text fields for you to
enter the menu Label and Tag properties.

Associating the Context Menu with an Object
Select the object in the Layout Editor for which you are defining the context
menu. Use the Property Inspector to set this object’s UIContextMenu property
to the desired context menu.

3 GUIDE Layout Tools

3-28

Add a callback routine subfunction to the application M-file for each item in the
context menu. This callback executes when users select the particular context
menu item. See The Menu Callback for information on defining the syntax.

Saving the GUI

3-29

Saving the GUI
The FIG-file that you create with the Layout Editor enables MATLAB to
reconstruct your GUI when it is deployed. Generally, a functional GUI consists
of two components:

• A FIG-file – containing a description of the GUI

• An M-file – containing the program that controls the GUI once it is deployed

FIG-Files
FIG-files (filename.fig) are binary files created as a result of saving a figure
with the hgsave command or using Save from the Layout Editor’s File menu.
FIG-files replace the MAT-file/M-file combination that was previously used to
save figures.

What a FIG-File Contains
A FIG-file contains a serialized figure object. That is, a complete description of
the figure object and all of its children is saved in the file. This enables
MATLAB to reconstruct the figure and all of its children when you open the
file. All of the objects property values are set to the values they were saved with
when the figure is recreated.

By default, FIG-files do not save the default figure toolbars and menus,
although you can save these elements using the hgsave and hgload commands.

Handle Remapping
One of the most useful aspects of FIG-files is the fact that object handles saved,
for example, in a UserData property are remapped to the newly created,
equivalent object.

For example, suppose you have created a GUI that uses three radio buttons.
Whenever a user selects one of the radio buttons, its callback routine must
check the state of the other radio buttons and set them to off (as this is the
standard behavior of radio buttons). To avoid having to search for the handles
of the other radio buttons (with findobj), you could save these handles in a
structure in the UserData property of each object.

When MATLAB reconstructs the figure and children (that is, deploys your
GUI), the handles of the equivalent new objects are assigned to a structure
with the same name and fields as in the original objects.

3 GUIDE Layout Tools

3-30

Opening FIG-Files
You can use the open, openfig, and hgload commands to open a file having a
.fig extension. The application M-file uses openfig to display the GUI.

4

Programming GUIs

GUI Programming Topics 4-2

Understanding the Application M-File 4-3
Execution Paths in the Application M-File 4-4
Initializing the GUI 4-7

Managing GUI Data with the Handles Structure . . . 4-10
Passing Data in the Handles Structure 4-10
Obtaining the Updated Handles Structure 4-12
If You Are Not Using a Handles Structure 4-12
Application-Defined Data 4-14

Designing for Cross-Platform Compatibility 4-15
Using the Default System Font 4-15
Using Standard Background Color 4-16
Cross-Platform Compatible Figure Units 4-17

Types of Callbacks 4-18
Callback Properties for All Graphics Objects 4-18
Callback Properties for Figures 4-18
Which Callback Executes 4-19
Adding A Callback 4-19

Interrupting Executing Callbacks 4-20
Controlling Interruptibility 4-20
The Event Queue 4-20
Event Processing During Callback Execution 4-21

Controlling GUI Figure Window Behavior 4-23
Using Modal Figure Windows 4-23

4 Programming GUIs

4-2

GUI Programming Topics
Graphical user interfaces (GUIs) contain various user-interface components
that enable software to communicate with an end user. One of the tasks of the
GUI implementer is to control how the GUI responds to user actions. This
section describes ways to approach the programming of the GUI.

• Understanding the Application M-File – The application M-file programs the
GUI. This section describes the functioning of the application M-file, both the
generated and user-written code.

• Managing GUI Data – The handles structure provides easy access to all
component handles in the GUI. In addition, you can use this structure to
store all global data required by your GUI.

• Designing for Cross-Platform Compatibility – This section discusses the
settings (used by default with GUIDE) that enable you to make your GUI
look good on different computer platforms.

• Types of Callbacks – You can define callbacks in addition to that defined by
the uicontrol Callback property. This sections discusses the types available
and their applications.

• Interrupting Executing Callbacks – This section describes how the GUI
programmer can control whether user actions can interrupt executing
callbacks.

• Controlling GUI Figure Window Behavior – This section discusses how a
GUI figure can block MATLAB execution and can be modal.

Understanding the Application M-File

4-3

Understanding the Application M-File
MATLAB generates the application M-file to provide a framework for the
program that controls the GUI. This framework fosters a programming style
that is efficient and robust. All code, including the callbacks, is contained in the
single application M-file.

The following code is the initialization section of the application M-file. This
code is generated by GUIDE.

function varargout = my_gui(varargin)

if nargin == 0 % If no input arguments, launch the GUI

fig = openfig(mfilename,'reuse');

% Use system color scheme for figure:

set(fig,'Color',get(0,'defaultUicontrolBackgroundColor'));

% Generate a structure of handles to pass to callbacks, and store it.

handles = guihandles(fig);

guidata(fig, handles);

% --

% Add any necessary initialization code here

% ---

if nargout > 0

varargout{1} = fig;

end

elseif ischar(varargin{1}) % INVOKE NAMED SUBFUNCTION OR CALLBACK

try

if (nargout)

[varargout{1:nargout}] = feval(varargin{:});

else

feval(varargin{:}); % FEVAL switchyard

end

catch

disp(lasterr);

end

end

Whether you use the GUIDE-generated application M-file or create your own
code, the programming techniques discussed here provide useful approaches to
GUI programming. The following sections discuss the architecture and
functioning of the application M-file:

4 Programming GUIs

4-4

• Execution Paths in the Application M-File

• Initializing the GUI

• Managing GUI Data with the Handles Structure

Execution Paths in the Application M-File
The application M-file follows different execution paths depending on what
arguments you use. For example:

• Calling the M-file with no arguments launches the GUI (if you assign an
output argument, the M-file returns the handle of the GUI figure).

• Calling the M-file with the name of a subfunction as the first argument
executes that specific subfunction (typically, but not necessarily, a callback
routine).

The Switchyard Code
The application M-file contains a “switchyard” that enables it to switch to
various execution paths depending on how it is called.

The switchyard is implemented using the feval function. feval executes the
subfunction whose name is passed as a string argument in a call to the
application M-file.

feval executes within a try/catch statement to catch errors caused by passing
the name of nonexistent subfunctions. The following code generated by GUIDE
implements the switchyard (you should not modify this code since the
functioning of the GUI depends on its correct behavior).

if nargin == 0 % If no arguments, open GUI

fig = openfig(mfilename,'reuse');

.

.

.
elseif ischar(varargin{1}) % INVOKE NAMED SUBFUNCTION OR CALLBACK

try

if (nargout)

[varargout{1:nargout}] = feval(varargin{:});

else

feval(varargin{:}); % FEVAL switchyard

end

Understanding the Application M-File

4-5

catch

disp(lasterr);

end

end

Any output arguments returned by your callback subfunction are then
returned though the main function via the first feval statement:

if (nargout) % If there are output arguments

[varargout{1:nargout}] = feval(varargin{:});

In addition, any input arguments you have added to the Callback property
string are included in the evaluated statement.

See Launching a Dialog to Confirm an Operation for an example that defines
additional input arguments.

The following diagram illustrates the execution path for the application M-file.

4 Programming GUIs

4-6

If no arguments
launch GUI

Call application M-file

Application M-File Execution Path

Check input
arguments

Yes

No

Open figure

Figure exists
and is reused

Raise GUI figure

Use system background color

Build handles struct from Tag properties

GUI Initialization

Return output arguments

Wait for user input option
feval the variable argument list
• First argument is subfunction

name
• Pass remaining arguments to

subfunction

Execute Callback

Single or Multiple Instance

Arguments > 0 and
first argument is string

End of program

Understanding the Application M-File

4-7

Initializing the GUI
The application M-file automatically includes some useful techniques for
managing the GUI. These technique include:

• Open the FIG-file.

• Single/multiple instance control.

• On screen placement of the GUI figure regardless of target computer screen
size and resolution.

• Structure containing GUI component handles automatically created.

• Automatic naming of Tag property, generation of subfunction prototype, and
assignment of Callback property string.

• Single M-file contains code to launch GUI and execute callbacks.

Opening the FIG-File
The application M-file uses the openfig command to load the GUI figure. The
actual command is

fig = openfig(mfilename,'reuse');

It is important to note that this statement derives the name of the FIG-file from
the application M-file (the mfilename command returns the name of the
currently executing M-file). If you are using the application M-file generated by
GUIDE, you must keep the names of the FIG-file and M-file the same. The
reuse argument specifies that there can be only a single instance of the GUI
displayed at any time (see below).

Single vs. Multiple Instance of the GUI
One of the decisions you must make when designing GUIs is whether you want
to allow multiple instances of the GUI figure to exist at one time.

If you choose to allow only a single instance of the GUI, subsequent attempts
to create another GUI figure simply bring the existing GUI to the front of other
windows.

The GUIDE Layout Editor is an example of a GUI that allows multiple
instances. This GUI enables users to have a number of layouts open
simultaneously.

4 Programming GUIs

4-8

Positioning the GUI Onscreen
The application M-file uses the movegui command to ensure the GUI figure is
visible on the screen of the target computer, regardless of the screen size and
resolution. If the specified figure position would result in the GUI being placed
off screen, movegui moves the figure to the nearest on-screen location with
respect to the specified position.

The statement in the application M-file is

movegui(fig,'onscreen')

where fig is the handle of GUI figure returned by the openfig command.

movegui also provides options to place the GUI at specific locations on the
screen.

Creating and Storing the Handles Structure
When you launch the GUI, the application M-file creates a structure that saves
the handles of all the components in the GUI. GUIDE stores this structure in
the figure’s application data so that it can be retrieved when needed (e.g., from
a callback subfunction).

The name of the structure field containing a given object’s handle is taken from
the object’s Tag property. For example, an object with a Tag value of
pushbutton1 is accessed with

handles.pushbutton1

You can access the figure’s hidden handle in a similar way. If the figure’s Tag
is figure1, then

handles.figure1

contains the figure’s handle.

The application M-files uses guihandles and guidata to create and store the
structure.

handles = guihandles(fig); % Create handle struct
guidata(fig,handles); % Save struct in figure’s app data

Note that only those components whose Tag property is set to a string that is a
valid variable name are included in this structure. Use isvarname to determine
if a string is a valid name.

Understanding the Application M-File

4-9

The handles structure is one of the arguments passed to each callback. You can
also use this same structure to save data and pass it between subfunctions. See
Managing GUI Data for a discussion of how to use the handles structure for
data.

4 Programming GUIs

4-10

Managing GUI Data with the Handles Structure
GUIDE provides a mechanism for storing and retrieving global data using the
same structure that contains the GUI component handles. The handles
structure, which containing the handles of all the components in the GUI, is
passed to each callback in the application M-file. Therefore, this structure is
useful for saving any global data. The following example illustrates this
technique.

If you are not familiar with MATLAB structures, see Structures for more
information.

Passing Data in the Handles Structure
This example demonstrates how to use the handles structure to pass data
between callbacks.

Suppose you want to create a GUI containing a slider and an editable text box
that behaves as follows:

• When users moves the slider, the text box displays the slider’s current value.

• When users types a value into the text box, the slider updates to this value.

• If they enter an out-of-range value in the text box, the application returns a
message indicating how many erroneous values have been entered.

This picture shows the GUI with a static text field above the edit text box.

Managing GUI Data with the Handles Structure

4-11

Defining the Data Fields During Initialization
The following excerpt from the GUI setup code show two additional fields
defined in the handles structure – errorString and numberOfErrors:

• guihandles creates the structure and adds the handles of the slider and edit
text using the Tag property to name the fields (edit1 and slider1).

• guidata saves the handles structure. This function can return the handles
structure as well.

fig = openfig(mfilename,'reuse');
handles = guihandles(fig); % Create structure for the first time
handles.errorString = 'Total number of errors: ';
handles.numberOfErrors = 0;
guidata(fig,handles); % Save the updated structure

Setting the Edit Text Value from the Slider Callback
Use the handles structure to obtain the handles of the edit text and the slider
and then set the edit text String to the slider Value.

set(handles.edit1,'String',...
num2str(get(handles.slider1,'Value')));

Note GUIDE-generated subfunctions take the handles structure as an
argument. This eliminates the need to call guidata from within a subfunction
to return the structure. However, if you make any changes to the handles
structure, you must use guidata to save these changes.

Setting the Slider Value from the Edit Text Callback
The edit text callback routine sets the slider’s value to the number the user
types in, after checking to see if it is a single numeric value within the range of
values allowed by the slider. If the value is out of range, then the error count is
incremented and the error string and the error count are displayed.

val = str2double(get(handles.edit1,'String'));
if isnumeric(val) & length(val)==1 & ...

val >= get(handles.slider1,'Min') & ...
val <= get(handles.slider1,'Max')
set(handles.slider1,'Value',val);

4 Programming GUIs

4-12

else
% Increment the error count, and display it

handles.numberOfErrors = handles.numberOfErrors+1;
set(handles.edit1,'String',...
[handles.errorString,num2str(handles.numberOfErrors)]);
guidata(gcbo,handles); % store the changes

 end

Saving the Handles Structure
You must use guidata to save the handles structure whenever you change
values in that structure. The statement,

guidata(gcbo,handles);

saves the current handles structure for the GUI figure.

Obtaining the Updated Handles Structure
There are cases where you must obtain an updated version of the handles
structure. You can do this with a call to guidata:

handles = guidata(figure_handle);

where figure_handle is the handle of the GUI figure where the handles
structure is stored.

When Do You Need to Reload the Handles Structure
The handles structure follows the same scoping rules as any MATLAB
variable. If you modify it in a subfunction (e.g., a callback) and return to the
main function, you must reload the structure using guidata.

Callbacks always load the current version of the handles structure by passing
guidata(gcbo) as an argument.

If You Are Not Using a Handles Structure
If you are writing your own application M-file and are not generating a handles
structure, you can still use the GUI figure’s application data for storing any
data that you want to pass between subfunctions. This mechanism involves:

• Creating a structure containing the data you want to store.

• Storing the structure in the figure’s application data.

Managing GUI Data with the Handles Structure

4-13

• Retrieving the structure within the subfunction when it is required.

Using the guidata Function without the Handles Structure
The guidata function provides a convenient interface to the figure’s application
data. It enables you to access the data without having to find the figure’s
handle (something that may be difficult when the handle is hidden) and avoids
the need to create and maintain a hard-coded property name for the application
data throughout your source code.

For example, you would set up the code similar to this.

In the initialization code:

fig = openfig(mfilename,'new'); % open GUI and save figure handle
.
.
.

data.field1 = value1; % Create a structure
guidata(fig,data) % Save the structure

Within a callback subfunction:

data = guidata(gcbo); % Load the data

value1 = data.field1; % Get the stored value

new_value = value1 + 1;
data.field1 = new_value; % Save a new value
guidata(gcbo,data) % Save the structure

Note that, once a callback routine has begun execution, guidata can obtain the
handle of the figure using gcbo (the handle of the object whose callback has
been called). However, in the initialization section, no callback routine has
been invoked so you cannot use gcbo. In this case, you can use the handle of the
GUI figure returned by openfig.

Note guidata always uses the same property name so you cannot use the
handles structure and define your own application data using guidata. See
Application-Defined Data for information about defining application data.

4 Programming GUIs

4-14

Application-Defined Data
Application-defined data provides a way for applications to save and retrieve
data stored with the GUI. This technique enables you to create what is
essentially a user-defined property for an object. You can use this property to
store data.

The application M-file uses application data to store the handles structure.

When using the GUIDE-generated application M-file, it is simpler to use
guidata than to access application data directly. See Managing GUI Data for
more information.

Functions for Accessing Application Data
The following functions provide access to application-defined data.

Functions for Accessing Application-Defined Data

Function Purpose

setappdata Specify application data

getappdata Retrieve named application data

isappdata True if the named application data exists

rmappdata Remove the named application data

Designing for Cross-Platform Compatibility

4-15

Designing for Cross-Platform Compatibility
You can use specific property settings to create a GUI that behaves more
consistently when run on different platforms:

• Use the default font (uicontrol FontName property).

• Use the default background color (uicontrol BackgroundColor property).

• Use figure character units (figure Units property).

Using the Default System Font
By default, uicontrols use the default font for the platform on which they are
running. For example, when displaying your GUI on PCs, uicontrols uses MS
San Serif. When your GUI runs on a different platform, it uses that computer’s
default font. This provides a consistent look with respect to your GUI and other
application GUIs.

If you have set the FontName property to a named font and want to return to
the default value, you can set the property to the string default. This ensures
MATLAB uses the system default at runtime.

From within the application M-file, use the set command. For example, if there
is a push button in your GUI and its handle is stored in the pushbutton1 field
of the handles structure, then the statement,

set(handles.pushbutton1,'FontName','default')

sets the FontName property to use the system default. You can also use the
Property Inspector to set this property:

4 Programming GUIs

4-16

Specifying a Fixed-Width Font
If you want to use a fixed-width font for a uicontrol, set its FontName property
to the string fixedwidth. This special identifier ensures that your GUI uses
the standard fixed-width font for the target platform.

You can find the name of the fixed-width font that is used on a given platform
by querying the root FixedWidthFontName property.

get(0,'FixedWidthFontName')

Using a Specific Font Name
You can specify an actual font name (such as Times or Courier) for the
FontName property. However, doing so may cause your GUI to look poorly when
run on a different computer. If the target computer does not have the specified
font, it will substitute another font that may not look good in your GUI or may
not be the standard font used for GUIs on that system. Also, different versions
of the same named font may have different size requirements for a given set of
characters.

Using Standard Background Color
By default, uicontrols use the standard background color for the platform on
which it is running (e.g., the standard shade of gray on the PC differs from that

Designing for Cross-Platform Compatibility

4-17

on UNIX). When your GUI is deployed on a different platform, it uses that
computer’s standard color. This provides a consistent look with respect to your
GUI and other application GUIs.

If you change the BackgroundColor to another value, MATLAB always uses
the specified color.

Cross-Platform Compatible Figure Units
Cross-platform compatible GUIs should look correct on computers having
different screen sizes and resolutions. Since the size of a pixel can vary on
different computer displays, using the default figure Units of pixels does not
produce a GUI that looks the same on all platforms.

For this reason, GUIDE sets the figure Units property to characters.

System-Dependent Units
Figure character units are defined by characters from the default system font;
one character unit equals the width of the letter x in the system font. The
height of one character is the distance between the baselines of two lines of text
(note that character units are not square).

GUIDE sets the figure Units property to characters so your GUIs
automatically adjust the size and relative spacing of components as the GUI
displays on different computers. For example, if the size of the text label on a
component becomes larger because of different system font metrics, then the
component size and the relative spacing between components increases
proportionally.

4 Programming GUIs

4-18

Types of Callbacks
The primary mechanism for implementing a GUI is programming the callback
of the uicontrol objects used to build the interface. However, in addition to the
uicontrol Callback property, there are other properties that enable you to
define callbacks.

Callback Properties for All Graphics Objects
All graphics objects have three properties that enable you to define callback
routines:

• ButtonDownFcn – MATLAB executes this callback when users click the left
mouse button and the cursor is over the object or within a five-pixel border
around the object. See Which Callback Executes for information specific to
uicontrols

• CreateFcn – MATLAB executes this callback when creating the object.

• DeleteFcn – MATLAB executes this callback just before deleting the object.

Callback Properties for Figures
Figures have additional properties that execute callback routines with the
appropriate user action. Only the CloseRequestFcn has a callback defined by
default:

• CloseRequestFcn – MATLAB executes the specified callback when a request
is made to close the figure (by a close command, by the window manager
menu, or by quitting MATLAB).

• KeyPressFcn – MATLAB executes the specified callback when users press a
key and the cursor is within the figure window.

• ResizeFcn – MATLAB executes the specified callback routine when users
resize the figure window.

• WindowButtonDownFcn – MATLAB executes the specified callback when
users click the mouse button and the cursor is within the figure, but not over
an enabled uicontrol.

• WindowButtonMotionFcn – MATLAB executes the specified callback when
users move the mouse button within the figure window.

Types of Callbacks

4-19

• WindowButtonUpFcn – MATLAB executes the specified callback when users
release the mouse button, after having pressed the mouse button within the
figure.

Which Callback Executes
Clicking on an enabled uicontrol prevents any ButtonDownFcn and
WindowButtonDownFcn callbacks from executing. If you click on an inactive
uicontrol, figure, or other graphics objects having callbacks defined, MATLAB
first executes the WindownButtonDownFcn of the figure (if defined) and then the
ButtonDownFcn of the object targeted by the mouse click.

Adding A Callback
To add a callback subfunction to your application M-file, click the right mouse
button while the object is selected to display the Layout Editor context menu.
Select the desired callback from the context menu and GUIDE adds the
subfunction stub to the application M-file.

4 Programming GUIs

4-20

Interrupting Executing Callbacks
By default, MATLAB allows an executing callback to be interrupted by
subsequently invoked callbacks. For example, suppose you have created a
dialog box that displays a progress indicator while loading data. This dialog
could have a “Cancel” button that stops the loading operation. The “Cancel”
button’s callback routine would interrupt the currently executing callback
routine.

There are cases where you may not want user actions to interrupt an executing
callback. For example, a data analysis tool may need to perform lengthy
calculations before updating a graph. An impatient user may inadvertently
click the mouse on other components and thereby interrupt the calculations
while in progress. This could change MATLAB’s state before returning to the
original callback.

The following sections provide more information on this topic:

• “Controlling Interruptibility”

• “The Event Queue”

• “Event Processing During Callback Execution”

Controlling Interruptibility
All graphics objects have an Interruptible property that determines whether
their callbacks can be interrupted. The default value is on, which means that
callbacks can be interrupted. However, MATLAB checks the event queue only
when it encounters certain commands – drawnow, figure, getframe, pause,
and, waitfor. Otherwise, the callback continues to completion.

The Event Queue
MATLAB commands that perform calculations or assign values to properties
execute as they are encountered in the callback. However, commands or actions
that affect the state of the figure window generate events that are placed in a
queue. Events are caused by any command that causes the figure to be redrawn
or any user action, such as a button click or cursor movement, for which there
is a callback routine defined.

MATLAB processes the event queue only when the callback finishes execution
or when the callback contains the following commands:

Interrupting Executing Callbacks

4-21

• drawnow

• figure
• getframe
• pause
• waitfor

When MATLAB encounters one of these commands in a callback, it suspends
execution and processes the events in the event queue. The way MATLAB
handles an event depends on the event type and the setting of the callback
object’s Interruptible property:

• Events that would cause another callback to execute (e.g., clicking a push
button or figure window mouse button actions) can execute the callback only
if the current callback object’s Interruptible property is on.

• Events that cause the figure window to redraw execute the redraw
regardless of the value of the current callback object’s Interruptible
property.

Note that callbacks defined for an object’s DeleteFcn or CreateFcn or a figure’s
CloseRequestFcn or ResizeFcn interrupt an executing callback regardless of
the value of the object’s Interruptible property.

What Happens to Events That Are Blocked – BusyAction Property
All objects have a BusyAction property that determines what happens to their
events when processed during noninterruptible callback routine execution.

BusyAction has two possible values:

• queue – Keep the event in the event queue and process it after the
noninterruptible callback finishes.

• cancel – Discard the event and remove it from the event queue.

Event Processing During Callback Execution
The following sequence describes how MATLAB processes events while a
callback executes:

1 If MATLAB encounters a drawnow, figure, getframe, pause, or waitfor
command in the callback routine, MATLAB suspends execution and begins
processing the event queue.

4 Programming GUIs

4-22

2 If the event at the top of the queue calls for a figure window redraw,
MATLAB performs the redraw and proceeds to the next event in the queue.

3 If the event at the top of the queue would cause a callback to execute,
MATLAB determines whether the object whose callback is suspended is
interruptible.

4 If the callback is interruptible, MATLAB executes the callback associated
with the interrupting event. If that callback contains a drawnow, figure,
getframe, pause, or waitfor command, MATLAB repeats these steps for the
remaining events in the queue.

5 If the callback is not interruptible, MATLAB checks the BusyAction
property of the object that generated the event.

a If BusyAction is queue, MATLAB leaves the event in the event queue.

b If BusyAction is cancel, MATLAB discards the event.

6 When all events have been processed (either left in the queue, discarded, or
handled as a redraw), MATLAB resumes execution of the interrupted
callback routine.

This process continues until the callback completes execution. When MATLAB
returns the prompt to the command window, all events have been processed.

Controlling GUI Figure Window Behavior

4-23

Controlling GUI Figure Window Behavior
When designing a GUI you need to consider how you want the figure window
to behave. The appropriate behavior for a particular GUI figure depends on
intended use. Consider the following examples:

• A GUI that implements tools for annotating graphs is usually designed to be
available while the user performs other MATLAB tasks. Perhaps this tool
operates on only one figure at a time so you need a new instance of this tool
for each graph.

• A dialog requiring an answer to a question may need to block MATLAB
execution until the user answers the question. However, the user may need
to look at other MATLAB windows to obtain information needed to answer
the question.

• A dialog warns users that the specified operation will delete files so you want
to force the user to respond to the warning before performing any other
action. In this case, the figure is both blocking and modal.

The following three techniques are useful for handling these GUI design issues:

• Allow single or multiple instances of the GUI at any one time.

• Block MATLAB execution while the GUI is displayed.

• Use modal figure windows that allow users to interact only with the GUI.

Using Modal Figure Windows
Modal windows trap all keyboard and mouse events that occur in any visible
MATLAB window. This means a modal GUI figure can process the user
interactions with any of its components, but does not allow the user to access
any other MATLAB window (including the command window). In addition, a
modal window remains stacked on top of other MATLAB windows until it is
deleted, at which time focus returns to the window that last had focus. See the
figure WindowStyle property for more details.

Use modal figures when you want to force users to respond to your GUI before
allowing them to take other actions in MATLAB.

4 Programming GUIs

4-24

Making a GUI Figure Modal
Set the GUI figure’s WindowStyle property to modal to make the window
modal. You can use the Property Inspector to change this property or add a
statement in the initialization section of the application M-file, using the
handle returned by openfig with the set command.

set(fig,'WindowStyle','modal')

Dismissing a Modal Figure
A GUI using a modal figure must take one of the following actions in a callback
routine to release control:

• Delete the figure.
delete(figure_handle)

• Make the figure invisible.
set(figure_handle,'Visible','off')

• Change the figure’s WindowStyle property to normal.
set(figure_handle,'WindowStyle','normal')

The user can also type Control+C in a modal figure to convert it to a normal
window.

Obtaining the Figure Handle from Within a Callback. In general, dismissing a modal
figure requires the handle of the figure. Since most GUIs hide figure handles
to prevent accidental access, the gcbf (get callback figure) command provides
the most effective method to get the figure handle from within a callback
routine.

gcbf returns the handle of the figure containing the object whose callback is
executing. This enables you to use gcbf in the callback of the component that
will dismiss the dialog. For example, suppose your dialog includes a push
button (tagged pushbutton1) that closes the dialog. Its callback could include
a call to delete at the end of its callback subfunction.
function varargout = pushbutton1_Callback(h,eventdata,handles,varargin)

% Execute code according to dialog design

.

.

.
% Delete figure after user responds to dialog

delete(gcbf)

5

Application Examples

Examples of Application Techniques 5-2

GUI with Multiple Axes 5-3

Launching a Dialog to Confirm an Operation 5-9

List Box Directory Reader 5-18

Accessing Workspace Variables from a List Box 5-24

A GUI to Set Simulink Model Parameters 5-28

An Address Book Reader 5-40

5 Application Examples

5-2

Examples of Application Techniques
This section contains a series of examples that illustrate techniques that are
useful for implemented GUIs. Each example provides a link to the actual GUI
in the GUIDE Layout Editor and a link to the application M-file displayed in
the MATLAB editor.

Note It is important that you use the links in each section to display the
layouts and M-files when reading these examples. To do this, you must be
running MATLAB and using the MATLAB Help browser.

• GUI with Multiple Axes – analyze data and generate frequency and time
domain plots in the GUI figure.

• Launching a Dialog to Confirm an Operation – display a second figure from
your GUI to ask a question. This modal dialog blocks MATLAB until the user
responds, then returns the answer to the calling GUI.

• List Box Directory Reader – list the contents of a directory, navigate to other
directories, and define what command to execute when users double-click on
a given type of file.

• Accessing Workspace Variables from a List Box – list variables in the base
MATLAB workspace from a GUI and plot them. This example illustrates
multiple item selection and executing commands in a different workspace.

• A GUI to Set Simulink Model Parameters – set parameters in a Simulink
model, save and plot the data, and implement a help button.

• An Address Book Reader – read data from MAT-files, edit and save the data,
and manage GUI data using the handles structure.

GUI with Multiple Axes

5-3

GUI with Multiple Axes
This example creates a GUI that contains two axes for plotting data. For
simplicity, this example obtains data by evaluating an expression using
parameters entered by the user.

Techniques Used in the Example
GUI-building techniques illustrated in this example include:

• Controlling which axes is the target for plotting commands.

• Using edit text controls to read numeric input and MATLAB expressions.

5 Application Examples

5-4

View the Layout and Application M-File
Use the following links to display the GUIDE Layout Editor and the MATLAB
Editor with a completed version of this example. This enables you to see the
values of all component properties and to understand how the components are
assembled to create the GUI. You can also see a complete listing of the code
that is discussed in the following sections.

Note The following links execute MATLAB commands and are designed to
work within the MATLAB Help browser. The first link adds a directory to your
MATLAB path.

Click here to display this GUI in the Layout Editor.

Click here to display the application M-file in the MATLAB Editor.

Design of the GUI
This GUI requires three input values:

• Frequency one (f1)

• Frequency two (f1)

• A time vector (t)

When the user clicks the Plot button, the GUI puts these values into a
MATLAB expression that is the sum of two sine function:

x = sin(2*pi*f1*t) + sin(2*pi*f2*t)

The GUI then calculates the FFT of x and creates two plots – one frequency
domain and one time domain.

Specifying Default Values for the Inputs
The GUI uses default values for the three inputs. This enables users to click on
the Plot button and see a result as soon as the GUI is launched. It also helps
to indicate what values the user might enter.

To create the default values, set the String property of the edit text. The
following pictures shows the value set for the time vector.

GUI with Multiple Axes

5-5

Identifying the Axes
Since there are two axes in this GUI, you must be able to specify which one you
want to target when you issue the plotting commands. To do this, use the
handles structure, which contains the handles of all components in the GUI.

The field name in the handles structure that contains the handle of any given
component is derived from the component’s Tag property. To make code more
readable (and to make it easier to remember) this examples sets the Tag to
descriptive names.

5 Application Examples

5-6

For example, the Tag of the axes used to display the FFT is set to
frequency_axes. Therefore, within a callback, you access its handle with

handles.frequency_axes

Likewise, the Tag of the time axes is set to time_axes.

See Creating and Storing the Handles Structure for more information on the
handles structure. See “Plot Push Button Callback” for the details of how to
use the handle to specify the target axes.

Application Option Settings
There are two application option settings that are particularly important for
this GUI:

• Resize behavior: Proportional

• Command-line accessibility: Callback

Proportional Resize Behavior. Selecting Proportional as the resize behavior
enables users to change the GUI to better view the plots. The components
change size in proportion to the GUI figure size. This generally produces good
results except when extremes of dimensions are used.

GUI with Multiple Axes

5-7

Callback Accessibility of Object Handles. When GUIs include axes, handles should
be visible from within callbacks. This enables you to use plotting commands
like you would on the command line. Note that Callback is the default setting
for command-line accessibility.

Plot Push Button Callback
This GUI uses only the Plot button callback; the edit text callbacks are not
needed and have been deleted from the application M-file. When a user clicks
the Plot button, the callback performs three basic tasks – it gets user input
from the edit text components, calculates data, and creates the two plots.

Getting User Input
The three edit text boxes provide a way for the user to enter the values for the
two frequencies and the time vector. The first task for the callback is to read
these values. This involves:

• Reading the current values in the three edit text boxes using the handles
structure to access the edit text handles.

• Converting the two frequency values (f1 and f2) from string to doubles using
str2double.

• Evaluating the time string using eval to produce a vector t, which the
callback used to evaluate the mathematical expression.

The following code shows how the callback obtains the input.

% Get user input from GUI

f1 = str2double(get(handles.f1_input,'String'));
f2 = str2double(get(handles.f2_input,'String'));
t = eval(get(handles.t_input,'String'));

Calculating Data
Once the input data has been converted to numeric form and assigned to local
variables, the next step is to calculate the data needed for the plots. See the fft
function of an explanation of how this is done.

Targeting Specific Axes
The final task for the callback is to actually generate the plots. This involves:

5 Application Examples

5-8

• Making the appropriate axes current using the axes command and the
handle of the axes. For example,
axes(handles.frequency_axes)

• Issuing the plot command.

• Setting any properties that are automatically reset by the plot command.

The last step is necessary because many plotting commands (including plot)
clear the axes before creating the graph. This means you cannot use the
Property Inspector to set the XMinorTick and grid properties that are used in
this example, since they are reset when the callback executes plot.

When looking at the following code listing, note how the handles structure is
used to access the handle of the axes when needed.

Plot Button Code Listing
function varargout = plot_button_Callback(h, eventdata, handles, varargin)

% Get user input from GUI

f1 = str2double(get(handles.f1_input,'String'));

f2 = str2double(get(handles.f2_input,'String'));

t = eval(get(handles.t_input,'String'));

% Calculate data

x = sin(2*pi*f1*t) + sin(2*pi*f2*t);

y = fft(x,512);

m = y.*conj(y)/512;

f = 1000*(0:256)/512;;

% Create frequency plot

axes(handles.frequency_axes) % Select the proper axes

plot(f,m(1:257))

set(handles.frequency_axes,'XMinorTick','on')

grid on

% Create time plot

axes(handles.time_axes) % Select the proper axes

plot(t,x)

set(handles.time_axes,'XMinorTick','on')

grid on

Launching a Dialog to Confirm an Operation

5-9

Launching a Dialog to Confirm an Operation
This example illustrates how to display a dialog when users attempt to close a
GUI. The purpose of the dialog is to force the user to confirm that they really
want to proceed with the close operation.

The following picture illustrates the dialog positioned over the GUI
application, awaiting the user’s response.

Dialog Requirements
You want to protect users from unintentionally closing a GUI application by
displaying a confirmation dialog when they press the Close button on the main
application window.

You want the dialog to:

• Be launched by the application’s Close button.

• Ask the user to confirm the close operation (i.e., respond yes or no).

• Block MATLAB execution until the user responds.

• Be modal to maintain focus while there is a pending operation.

5 Application Examples

5-10

• Handle the case where the user closes the dialog from the window manager
close box without responding.

The following sections discuss the implementation of this dialog.

View the Layout and Application M-File
Use the following links to display the GUIDE Layout Editor and the MATLAB
Editor with a completed version of this example. This enables you to see the
values of all component properties and to understand how the components are
assembled to create the GUI. You can also see a complete listing of the code
that is discussed in the following sections.

Note The following links execute MATLAB commands and are designed to
work within the MATLAB Help browser. The first link adds a directory to your
MATLAB path.

Click here to display this GUI in the Layout Editor.

Click here to display the application M-file the editor.

Implementing the GUI
This section describes how to implement the GUI described in the previous
section.

Launching the Dialog
The Close button’s callback launches a dialog that asks for confirmation of the
impending close operation. The Close button’s callback then waits for the
dialog to return a value that indicates the user’s response. To implement this
behavior, the dialog’s application M-file defines an output argument that the
Close button’s callback waits for.

Wait for User Input
To make the dialog wait for user input, select Function does not return until
application window dismissed in the GUIDE Application Options dialog.
This option adds a call to uiwait in the dialog’s application M-file.

Launching a Dialog to Confirm an Operation

5-11

Making the Dialog Modal
To make the dialog modal, select the figure in the Layout Editor and right-click
to display the context menu. Select Property Inspector from the context
menu. Use the Property Inspector to set the figure’s WindowStyle property to
modal.

Sequence Following a Close Button Press
The following sequence occurs when the user presses the Close button on the
GUI application:

1 User clicks Close button – its callback calls the M-file to launch the
confirmation dialog and waits for a returned value.

2 Confirmation dialog M-file executes and waits for the user to take one of
three possible actions: click the Yes push button, click the No push button,
or click the close box (X) on the window border. All other interactions with
MATLAB are blocked.

5 Application Examples

5-12

3 Once the user makes a choice, the confirmation dialog callbacks resume
execution and return a value to the Close button callback.

4 Close button callback resumes execution and takes appropriate action
based on user response to the confirmation dialog.

The Close Button Callback
The Close button callback performs the following tasks:

• Determines where to locate of the confirmation dialog based on the current
size and location of the GUI application figure.

• Calls the M-file (modaldlg) that launches the confirmation dialog with an
input argument that specifies where to locate the dialog and an output
argument to return the user response to the Close button callback.

• Takes the appropriate action depending on the answer returned from the
dialog.

Here is the Close button callback:

function varargout = pushbutton1_Callback(h, eventdata, handles, varargin)

pos_size = get(handles.figure1,'Position');

dlg_pos = [pos_size(1)+pos_size(3)/5 pos_size(2)+pos_size(4)/5];

user_response = modaldlg(dlg_pos);

switch user_response

case {'no','cancel'}

return

case 'yes'

% Prepare to close GUI application figure

% .

% .

% .

delete(handles.figure1)

end

The Confirmation Dialog M-file
The confirmation dialog has its own M-file, which the main application calls to
launch the dialog. This M-file can be called in three ways:

• No arguments – launch the dialog and wait for user input.

Launching a Dialog to Confirm an Operation

5-13

• One numeric argument – launch the dialog and place it at the location
specified in a two-element vector.

• Four arguments – call the Yes or No button callback with the usual
arguments (h,eventdata,handles,varargin).

With each calling syntax, the M-file returns a string output argument
indicating the user response.

The M-file performs various operations, which are described in the following
sections:

• Launch the dialog

• Specify the location of the dialog

• Wait for user response

• Execute a callback

• The Yes button and No button callbacks

Launch the Dialog
This section of the M-file launches the dialog if the number of input arguments
is zero or one numeric value. This involves:

• Checking for the correct number of input arguments (callbacks have 4
arguments).

• Using openfig to load the FIG-file.

• Setting the figure color to the standard GUI color on the host system.

• Creating the handles structure.

Note that the function returns one output argument, answer, which is passed
to the Close button callback.

function answer = modaldlg(varargin)

error(nargchk(0,4,nargin)) % function takes 0, 1, or 4 arguments

if nargin == 0 | isnumeric(varargin{1})

fig = openfig(mfilename,'reuse');

set(fig,'Color',get(0,'defaultUicontrolBackgroundColor'));

handles = guihandles(fig);

guidata(fig, handles);

5 Application Examples

5-14

Specify the Location of the Dialog
The dialog M-file accepts an input argument that specifies where to display the
dialog. This enables the Close button callback to locate the dialog with respect
to the main application window. The argument is a two-element vector
containing the left and bottom offsets from the right and lower edge of the
screen, in character units. The Close button callback determines these values.

Preventing Figure Flash
In some cases, repositioning the dialog’s figure may cause it to “flash” on the
screen in its current position before the set command repositions it. To prevent
this effect, save the dialog with its figure Visible property set to off. You can
then set the Visible property to on after specifying the position. Note that you
must specify the Position property before setting the visibility to on.

if nargin == 1

pos_size = get(fig,'Position');

pos = varargin{1};

if length(pos) ~= 2

error('Input argument must be a 2-element vector')

end

new_pos = [pos(1) pos(2) pos_size(3) pos_size(4)];

set(fig,'Position',new_pos,'Visible','on')

end

Wait for User Response
uiwait causes modaldlg to wait before returning execution to the Close button
callback. During this time, the dialog’s callbacks can execute in response to
user action.

uiwait waits until the dialog figure is deleted or a uiresume executes. This can
be caused when:

• The user clicks the X in the close box on the window border. If this happens,
uiwait returns. Since the handle stored in the variable fig no longer
corresponds to a figure, modaldlg uses an ishandle test to return 'cancel'
to the Close button callback.

• The Yes button callback executes uiresume after setting handles.answer to
'yes'.

Launching a Dialog to Confirm an Operation

5-15

• The No button callback executes uiresume after setting handles.answer to
'no'.

uiwait(fig);

if ~ishandle(fig)

answer = 'cancel';

else

handles = guidata(fig);

answer = handles.answer;

delete(fig);

end

Executing a Callback
This is the feval switchyard that enables modaldlg to execute the callback
subfunctions. It relies on the fact that when modaldlg is called to execute a
callback, the first argument is a string (the name of the callback).

elseif ischar(varargin{1}) % Invoke named subfunction or callback

try

[varargout{1:nargout}] = feval(varargin{:}); % FEVAL switchyard

catch

disp(lasterr);

end

end

Defining the Yes and No Buttons Callbacks
The callbacks for the Yes and No buttons perform the same basic steps:

• Assign the user response in the handles structure answer field.

• Use guidata to save the modified handles structure, which is then read by
the main function.

• Use uiresume to continue the blocked code in the main function.

The Tag property of each push button uicontrol was changed before saving the
M-file so that the callback function names are more descriptive. The following
code illustrates the implementation of the callbacks.

function varargout = noButton_Callback(h, eventdata, handles, varargin)

handles.answer = 'no';

guidata(h, handles);

5 Application Examples

5-16

uiresume(handles.figure1);

function varargout = yesButton_Callback(h, eventdata, handles, varargin)

handles.answer = 'yes';

guidata(h,handles);

uiresume(handles.figure1);

Protecting the GUI with a Close Request Function
Whenever a user closes a figure, MATLAB first executes the figure’s close
request function, as defined by the CloseRequestFcn figure property. The
default close request function simply deletes the figure. However, a GUI may
want to protect the user from unintentionally deleting a figure if they click on
the X in the close box of the window border.You can change the default close
request function by redefining the figure’s CloseRequesFcn.

The “The Close Button Callback” section shows a callback for the GUI’s Close
button that you could also use as a close request function. To add the new close
request function to your application M-file, select the figure in the Layout
Editor and right click to display the context menu.

Launching a Dialog to Confirm an Operation

5-17

Select Edit CloseRequestFcn from the context menu. GUIDE automatically
places a new subfunction in the application M-file for the GUI and changes the
figure’s CloseRequesFcn property to execute this subfunction as the close
request function.

The Redefined Close Request Function
The GUIs close request function simply calls the Close button’s callback.

function varargout = figure1_CloseRequestFcn(h,eventdata,handles,varargin)

pushbutton1_Callback(h,eventdata,handles)

5 Application Examples

5-18

List Box Directory Reader
This example uses a list box to display the files in a directory. When the user
double clicks on a list item, one of the following happens:

• If the item is a file, the GUI opens the file appropriately for the file type.

• If the item is a directory, the GUI reads the contents of that directory into
the list box.

• If the item is a single dot (.), the GUI updates the display of the current
directory.

• If the item is two dots (..), the GUI changes to the directory up one level and
populates the list box with the contents of that directory.

The following picture illustrates the GUI.

View the Layout and Application M-File
Use the following links to display the GUIDE Layout Editor and the MATLAB
Editor with a completed version of this example. This enables you to see the
values of all component properties and to understand how the components are
assembled to create the GUI. You can also see a complete listing of the code
that is discussed in the following sections.

List Box Directory Reader

5-19

Note The following links execute MATLAB commands and are designed to
work within the MATLAB Help browser. The first link adds a directory to your
MATLAB path.

Click here to display this GUI in the Layout Editor.

Click here to display the application M-file in the editor.

Implementing the GUI
The following sections describe the implementation.

• Specifying the Directory to List – shows how to pass a directory path as input
argument when the GUI is launched.

• Loading the List Box – describes the subfunction that loads the contents of
the directory into the list box. This subfunction also saves information about
the contents of a directory in the handles structure.

• The List Box Callback – explains how the list box is programmed to respond
to user double clicks on items in the list box.

Specifying the Directory to List
You can specify the directory to list when the GUI is first opened by passing the
full pathname as a string input argument. If you do not specify a directory (i.e.,
if you call the application M-file with no input arguments), the GUI then uses
MATLAB’s current directory.

As generated, the application M-file launches the GUI when there are no input
arguments and calls a subfunction when the first input argument is a
character string. This example changes this behavior so that you can call the
M-file with:

• No input arguments – launch the GUI using MATLAB’s current directory.

• First input argument is a valid directory – launch the GUI, displaying the
specified directory.

• First input argument is not a directory, but is a character string and there is
more than one argument – execute the subfunction identified by the
argument (execute callback).

5 Application Examples

5-20

The following code listing show the entire initialization section of the
application M-file. The statements in bold are the additions made to the
generated code.

function varargout = lbox2(varargin)

if nargin <= 1 % LAUNCH GUI
if nargin == 0

initial_dir = pwd;
elseif nargin == 1 & exist(varargin{1},'dir')

initial_dir = varargin{1};
else

errordlg('Input argument must be a valid directory',...
'Input Argument Error!')

return
end
fig = openfig(mfilename,'reuse');

% Use system color scheme for figure:

set(fig,'Color',get(0,'defaultUicontrolBackgroundColor'));

% Generate a structure of handles to pass to callbacks, and store it.

handles = guihandles(fig);

guidata(fig, handles);

% Populate the listbox

load_listbox(varargin{1},handles)
if nargout > 0

varargout{1} = fig;

end

elseif ischar(varargin{1}) % INVOKE NAMED SUBFUNCTION OR CALLBACK

try

if (nargout)

[varargout{1:nargout}] = feval(varargin{:}); % FEVAL switchyard

else

feval(varargin{:}); % FEVAL switchyard

end

catch

disp(lasterr);

end

end

List Box Directory Reader

5-21

Loading the List Box
This example creates a subfunction to load items into the list box. This
subfunction accepts the path to a directory and the handles structure as input
arguments. It performs these steps:

• Change to the specified directory so the GUI can navigate up and down the
tree as required.

• Use the dir command to get a list of files in the specified directory and to
determine which name is a directory and which is a file. dir returns a
structure (dir_struct) with two fields – name and isdir, which contain this
information.

• Sort the file and directory names (sortrows) and save the sorted names and
other information in the handles structure so this information can be passed
to other functions.

The name structure field is passed to sortrows as a cell array, which is
transposed to get one file name per row. The isdir field and the sorted index
values, sorted_index, are saved as vectors in the handles structure.

• Call guidata to save the handles structure.

• Set the list box String property to display the file and directory names and
set the Value property to 1. This is necessary to ensure Value never exceeds
the number of items in String, since MATLAB updates the Value property
only when a selection occurs and not when the contents of String changes.

• Displays the current directory in the text box by setting its String property
to the output of the pwd command.

The load_listbox function is called in the initialization section of the
application M-file as well as by the list box callback.

function load_listbox(dir_path,handles)

cd (dir_path) % Change to the specified directory

dir_struct = dir(dir_path); % List contents of directory

[sorted_names,sorted_index] = sortrows({dir_struct.name}'); % Sort names

handles.file_names = sorted_names; % Save the sorted names

handles.is_dir = [dir_struct.isdir]; % Save names of directories

handles.sorted_index = [sorted_index]; % Save sorted index values

guidata(handles.figure1,handles) % Save the handles structure

set(handles.listbox1,'String',handles.file_names,'Value',1) % Load listbox

set(handles.text1,'String',pwd) % Display current directory

5 Application Examples

5-22

The List Box Callback
The list box callback handles only one case: a double click on an item. Double
clicking is the standard way to open a file from a list box. If the selected item
is a file, it is passed to the open command; if it is a directory, the GUI changes
to that directory and lists its contents.

Defining How to Open File Types
The callback makes use of the fact that the open command can handle a
number of different file types. However, the callback treats FIG-files
differently. Instead of opening the FIG-file, it passes it to the guide command
for editing.

Determining Which Item the User Selected
Since a single click on an item also invokes the list box callback, it is necessary
to query the figure SelectionType property to determine when the user has
performed a double click. A double click on an item sets the SelectionType
property to open.

All the items in the list box are referenced by an index from 1 to n, where 1
refers to the first item and n is the index of the nth item. MATLAB saves this
index in the list box Value property.

The callback uses this index to get the name of the selected item from the list
of items contained in the String property.

Determining if the Selected Item is a File or Directory
The load_listbox function uses the dir command to obtain a list of values
that indicate whether an item is a file or directory. These values (1 for
directory, 0 for file) are saved in the handles structure. The list box callback
queries these values to determine if current selection is a file or directory and
takes the following action:

• If the selection is a directory – change to the directory (cd) and call
load_listbox again to populate the list box with the contents of the new
directory.

• If the selection is a file – get the file extension (fileparts) to determine if it
is a FIG-file, which is opened with guide. All other file types are passed to
open.

List Box Directory Reader

5-23

The open statement is called within a try/catch block to capture errors in an
error dialog (errordlg), instead of returning to the command line.

function varargout = listbox1_Callback(h,eventdata,handles,varargin)

if strcmp(get(handles.figure1,'SelectionType'),'open') % If double click

index_selected = get(handles.listbox1,'Value');

file_list = get(handles.listbox1,'String');

filename = file_list{index_selected}; % Item selected in list box

if handles.is_dir(handles.sorted_index(index_selected)) % If directory

cd (filename)

load_listbox(pwd,handles) % Load list box with new directory

else

[path,name,ext,ver] = fileparts(filename);

switch ext

case '.fig'

guide (filename) % Open FIG-file with guide command

otherwise

try

open(filename) % Use open for other file types

catch

errordlg(lasterr,'File Type Error','modal')

end

end

end

end

Opening Unknown File Types
You can extend the file types that the open command recognizes to include any
file having a three-character extension. You do this by creating an M-file with
the name openxyz, where xyz is the extension. Note that the list box callback
does not take this approach for .fig files since openfig.m is required by the
application M-file. See open for more information.

5 Application Examples

5-24

Accessing Workspace Variables from a List Box
This GUI uses a list box to display workspace variables, which the user can
then plot.

Techniques Used in This Example
This example demonstrates how to:

• Populate the list box with the variable names that exist in the base
workspace.

• Display the list box with no items initially selected.

• Enable multiple item selection in the list box.

• Update the list items when the user press a button.

• Evaluate the plotting commands in the base workspace.

The following figure illustrates the layout.

Note that the list box callback is not used in this program because the plotting
actions are initiated by push buttons. In this situation you must do one of the
following:

• Leave the empty list box callback in the application M-file.

Accessing Workspace Variables from a List Box

5-25

• Delete the string assigned to the list box Callback property.

View the Layout and Application M-File
Use the following links to display the GUIDE Layout Editor and the MATLAB
Editor with a completed version of this example. This enables you to see the
values of all component properties and to understand how the components are
assembled to create the GUI. You can also see a complete listing of the code
that is discussed in the following sections.

Note The following links execute MATLAB commands and are designed to
work within the MATLAB Help browser. The first link adds a directory to your
MATLAB path.

Click here to display this GUI in the Layout Editor.

Click here to display the application M-file in the editor.

Reading Workspace Variables
When the GUI initializes, it needs to query the workspace variables and set the
list box String property to display these variable names. The following
subfunction added to the application M-file accomplishes this using evalin to
execute the who command in the base workspace. The who command returns a
cell array of strings, which are used to populate the list box.

function update_listbox(handles)
vars = evalin('base','who');
set(handles.listbox1,'String',vars)

The function’s input argument is the handles structure generated by the
application M-file. This structure contains the handle of the list box, as well as
the handles all other components in the GUI.

The callback for the Update Listbox push button also calls update_listbox.

5 Application Examples

5-26

Reading the Selections from the List Box
This GUI requires the user to select two variables from the workspace and then
choose one of three plot commands to create the graph – plot, semilogx,
semilogy.

Enabling Multiple Selection
To enable multiple selection in a list box, you must set the Min and Max
properties so that Max – Min > 1. This requires you to change the default Min
and Max values of 0 and 1 to meet these conditions. Use the Property Inspector
to set these properties on the list box.

How Users Select Multiple Items
List box multiple selection follows the standard for most systems:

• Control-click left mouse button – noncontiguous multi-item selection

• Shift-click left mouse button – contiguous multi-item selection

Users must use one of these techniques to select the two variables required to
create the plot.

Returning Variable Names for the Plotting Functions
The get_var_names subroutine returns the two variable names that are
selected when the user clicks on one of the three plotting buttons. The function:

• Gets the list of all items in the list box from the String property.

• Gets the indices of the selected items from the Value property.

• Returns two string variables, if there are two items selected. Otherwise
get_var_names displays an error dialog explaining that the user must select
two variables.

Here is the code for get_var_names:

function [var1,var2] = get_var_names(handles)
list_entries = get(handles.listbox1,'String');
index_selected = get(handles.listbox1,'Value');
if length(index_selected) ~= 2

errordlg('You must select two variables',...
'Incorrect Selection','modal')

else

Accessing Workspace Variables from a List Box

5-27

var1 = list_entries{index_selected(1)};
var2 = list_entries{index_selected(2)};

end

Callbacks for the Plotting Buttons
The callbacks for the plotting buttons call get_var_names to get the names of
the variables to plot and then call evalin to execute the plot commands in the
base workspace.

For example, here is the callback for the plot function:

function varargout = plot_button_Callback(h,eventdata,handles,varargin)

[x,y] = get_var_names(handles);

evalin('base',['plot(' x ',' y ')'])

The command to evaluate is created by concatenating the strings and variables
that result in the command:

plot(x,y)

5 Application Examples

5-28

A GUI to Set Simulink Model Parameters
This example illustrates how to create a GUI that sets the parameters of a
Simulink model. In addition, the GUI can run the simulation and plot the
results. The following picture shows the GUI after running three simulations
with different values for controller gains.

Techniques Used in This Example
This example illustrates a number of GUI building techniques:

• Opening and setting parameters on a Simulink model from a GUI.

• Implementing sliders that operate in conjunction with text boxes, which
display the current value as well as accepting user input.

• Enabling and disabling controls, depending on the state of the GUI.

• Managing a variety of global data using the handles structure.

• Directing graphics output to figures with hidden handles.

• Adding a help button that displays .html files in the MATLAB Help
browser.

View the Layout and Application M-File
Use the following links to display the GUIDE Layout Editor and the MATLAB
Editor with a completed version of this example. This enables you to see the
values of all component properties and to understand how the components are

A GUI to Set Simulink Model Parameters

5-29

assembled to create the GUI. You can also see a complete listing of the code
that is discussed in the following sections.

Note The following links execute MATLAB commands and are designed to
work within the MATLAB Help browser. The first link adds a directory to your
MATLAB path.

Click here to display this GUI in the Layout Editor.

Click here to display the application M-file in the editor.

How to Use the GUI (Text of GUI Help)
You can use the F14 Controller Gain Editor to analyze how changing the gains
used in the Proportional-Integral Controller affect the aircraft’s angle of attack
and the amount of G force the pilot feels.

Note that the Simulink diagram f14.mdl must be open to run this GUI. If you
close the F14 Simulink model, the GUI reopens it whenever it requires the
model to execute.

Changing the Controller Gains
You can change gains in two blocks:

• The Proportional gain (Kf) in the Gain block

• The Integral gain (Ki) in the Transfer Function block

You can change either of the gains in one of the two ways:

• Move the slider associated with that gain.

• Type a new value into the Current value edit field associated with that gain.

The block’s values are updated as soon as you enter the new value in the GUI.

Running the Simulation
Once you have set the gain values, you can run the simulation by pressing the
Simulate and store results button. The simulation time and output vectors
are stored in the Results list.

5 Application Examples

5-30

Plotting the Results
You can generate a plot of one or more simulation results by selecting the row
of results (Run1, Run2, etc.) in the Results list that you want to plot and clicking
the Plot button. If you select multiple rows, the graph contains a plot of each
result.

The graph is displayed in a figure, which is cleared each time you click the Plot
button. The figure’s handle is hidden so that only the GUI can display graphs
in this window.

Removing Results
To remove a result from the Results list, select the row or rows you want to
remove and click the Remove button.

Launching the GUI
The GUI is nonblocking and nonmodal since it is designed to be used as an
analysis tool.

Application Options Settings
This GUI uses the following application option settings:

• Resize behavior: Non-resizable

• Command-line accessibility: Off

• Application M-file options selected:

Generate callback function prototypes

Application allows only one instance to run

Use system color scheme for background

Opening the Simulink Block Diagrams
This example is designed to work with the F14 Simulink model. Since the GUI
sets parameters and runs the simulation, the F14 model must be open when
the GUI is displayed. When the application M-file launches the GUI, it
executes the model_open subfunction. The purpose of the subfunction is to:

• Determine if the model is open (find_system).

• Open the block diagram for the model and the subsystem where the
parameters are being set, if not open already (open_system).

A GUI to Set Simulink Model Parameters

5-31

• Change the size of the controller Gain block so it can display the gain value
(set_param).

• Bring the GUI forward so it is displayed on top of the Simulink diagrams
(figure).

• Set the block parameters to match the current settings in the GUI.

Here is the code for the model_open subfunction.

function model_open(handles)

if isempty(find_system('Name','f14')),

open_system('f14'); open_system('f14/Controller')

set_param('f14/Controller/Gain','Position',[275 14 340 56])

figure(handles.F14ControllerEditor)

set_param('f14/Controller Gain','Gain',...

get(handles.KfCurrentValue,'String'))

set_param('f14/Controller/Proportional plus integral compensator',...

'Numerator',...

get(handles.KiCurrentValue,'String'))

end

Programming the Slider and Edit Text Components
This GUI employs a useful combination of components in its design. Each
slider is coupled to an edit text component so that:

• The edit text displays the current value of the slider.

• The user can enter a value into the edit text box and cause the slider to
update to that value.

• Both components update the appropriate model parameters when activated
by the user.

Slider Callback
The GUI uses two sliders to specify block gains since these components enable
the selection of continuous values within a specified range. When a user
changes the slider value, the callback executes the following steps:

• Calls model_open to ensure that the Simulink model is open so that
simulation parameters can be set.

• Gets the new slider value.

5 Application Examples

5-32

• Sets the value of the Current value edit text component to match the slider.

• Sets the appropriate block parameter to the new value (set_param).

Here is the callback for the Proportional (Kf) slider.

function varargout = KfValueSlider_Callback(h,eventdata,handles,varargin)

% Ensure model is open

model_open(handles)

% Get the new value for the Kf Gain from the slider

NewVal = get(h,'Value');

% Set the value of the KfCurrentValue to the new value set by slider

set(handles.KfCurrentValue,'String',NewVal)

% Set the Gain parameter of the Kf Gain Block to the new value
set_param('f14/Controller/Gain','Gain',num2str(NewVal))

Note that, while a slider returns a number and the edit text requires a string,
uicontrols automatically convert the values to the correct type.

The callback for the Integral (Ki) slider follows a similar approach.

Current Value Edit Text Callback
The edit text box enables users to type in a value for the respective parameter.
When the user clicks on another component in the GUI after typing into the
text box, the edit text callback executes the following steps:

• Calls model_open to ensure that the Simulink model is open so that it can set
simulation parameters.

• Converts the string returned by the edit box String property to a double
(str2double).

• Checks whether the value entered by the user is within the range of the
slider:

If the value is out of range, the edit text String property is set to the value
of the slider (rejecting the number typed in by the user).

If the value is in range, the slider Value property is updated to the new value.

• Sets the appropriate block parameter to the new value (set_param).

Here is the callback for the Kf Current value text box.

function varargout = KfCurrentValue_Callback(h,eventdata,handles,varargin)

% Ensure model is open

A GUI to Set Simulink Model Parameters

5-33

model_open(handles)

% Get the new value for the Kf Gain

NewStrVal = get(h,'String');

NewVal = str2double(NewStrVal);

% Check that the entered value falls within the allowable range

if isempty(NewVal) | (NewVal< -5) | (NewVal>0),

% Revert to last value, as indicated by KfValueSlider

OldVal = get(handles.KfValueSlider,'Value');

set(h,'String',OldVal)

else, % Use new Kf value

% Set the value of the KfValueSlider to the new value

set(handles.KfValueSlider,'Value',NewVal)

% Set the Gain parameter of the Kf Gain Block to the new value

set_param('f14/Controller/Gain','Gain',NewStrVal)

end

The callback for the Ki Current value follows a similar approach.

Running the Simulation from the GUI
The GUI Simulate and store results button callback runs the model
simulation and stores the results in the handles structure. Storing data in the
handles structure simplifies the process of passing data to other subfunction
since this structure can be passed as an argument.

When a user clicks on the Simulate and store results button, the callback
executes the following steps:

• Calls sim, which runs the simulation and returns the data that is used for
plotting.

• Creates a structure to save the results of the simulation, the current values
of the simulation parameters set by the GUI, and the run name and number.

• Stores the structure in the handles structure.

• Updates the list box String to list the most recent run.

Here is the Simulate and store results button callback.

function varargout = SimulateButton_Callback(h,eventdata,handles,varargin)

[timeVector,stateVector,outputVector] = sim('f14');

% Retrieve old results data structure

if isfield(handles,'ResultsData') & ~isempty(handles.ResultsData)

5 Application Examples

5-34

ResultsData = handles.ResultsData;

% Determine the maximum run number currently used.

maxNum = ResultsData(length(ResultsData)).RunNumber;

ResultNum = maxNum+1;

else

% Set up the results data structure

ResultsData = struct('RunName',[],'RunNumber',[],...

'KiValue',[],'KfValue',[],'timeVector',[],'outputVector',[]);

ResultNum = 1;

end

if isequal(ResultNum,1),

% Enable the Plot and Remove buttons

set([handles.RemoveButton,handles.PlotButton],'Enable','on')

end

% Get Ki and Kf values to store with the data and put in the results list.

Ki = get(handles.KiValueSlider,'Value');

Kf = get(handles.KfValueSlider,'Value');

ResultsData(ResultNum).RunName = ['Run',num2str(ResultNum)];

ResultsData(ResultNum).RunNumber = ResultNum;

ResultsData(ResultNum).KiValue = Ki;

ResultsData(ResultNum).KfValue = Kf;

ResultsData(ResultNum).timeVector = timeVector;

ResultsData(ResultNum).outputVector = outputVector;

% Build the new results list string for the listbox

ResultsStr = get(handles.ResultsList,'String');

if isequal(ResultNum,1)

ResultsStr = {['Run1 ',num2str(Kf),' ',num2str(Ki)]};

else

ResultsStr = [ResultsStr;...

{['Run',num2str(ResultNum),' ',num2str(Kf),' ',num2str(Ki)]}];

end

set(handles.ResultsList,'String',ResultsStr);

% Store the new ResultsData

handles.ResultsData = ResultsData;

guidata(h,handles)

Removing Results from the List Box
The GUI Remove button callback deletes any selected item from the Results
list list box. It also deletes the corresponding run data from the handles

A GUI to Set Simulink Model Parameters

5-35

structure. When a user clicks on the Remove button, the callback executes the
following steps:

• Determines which list box items are selected when a user clicks on the
Remove button and removes these items from the list box String property
by setting each item to the empty matrix [].

• Removes the deleted data from the handles structure.

• Displays the string <empty> and disables the Remove and Plot buttons
(using the Enable property), if all the items in the list box are removed.

• Save the changes to the handles structure (guidata).

Here is the Remove button callback.

function varargout = RemoveButton_Callback(h, eventdata, handles, varargin)

currentVal = get(handles.ResultsList,'Value');

resultsStr = get(handles.ResultsList,'String');

numResults = size(resultsStr,1);

% Remove the data and list entry for the selected value

resultsStr(currentVal) =[];

handles.ResultsData(currentVal)=[];

% If there are no other entries, disable the Remove and Plot button

% and change the list sting to <empty>

if isequal(numResults,length(currentVal)),

resultsStr = {'<empty>'};

currentVal = 1;

set([handles.RemoveButton,handles.PlotButton],'Enable','off')

end

% Ensure that list box Value is valid, then reset Value and String

currentVal = min(currentVal,size(resultsStr,1));

set(handles.ResultsList,'Value',currentVal,'String',resultsStr)

% Store the new ResultsData

guidata(h,handles)

Plotting the Results Data
The GUI Plot button callback creates a plot of the run data and adds a legend.
The data to plot is passed to the callback in the handles structure, which also
contains the gain settings used when the simulation ran. When a user clicks on
the Plot button, the callback executes the following steps:

5 Application Examples

5-36

• Collects the data for each run selected in the Results list, including two
variables (time vector and output vector) and a color for each result run to
plot.

• Generates a string for the legend from the stored data.

• Creates the figure and axes for plotting and saves the handles for use by the
Close button callback.

• Plots the data, adds a legend, and makes the figure visible.

Plotting Into the Hidden Figure
The figure that contains the plot is created invisible and then made visible
after adding the plot and legend. To prevent this figure from becoming the
target for plotting commands issued at the command line or by other GUIs, its
HandleVisibility and IntegerHandle properties are set to off. However, this
means the figure is also hidden from the plot and legend commands.

Use the following steps to plot into a hidden figure:

• Save the handle of the figure when you create it.

• Create an axes, set its Parent property to the figure handle, and save the
axes handle.

• Create the plot (which is one or more line objects), save these line handles,
and set their Parent properties to the handle of the axes.

• Make the figure visible.

Plot Button Callback Listing
Here is the Plot button callback.

function varargout = PlotButton_Callback(h, eventdata, handles, varargin)

currentVal = get(handles.ResultsList,'Value');

% Get data to plot and generate command string with color specified

legendStr = cell(length(currentVal),1);

plotColor = {'b','g','r','c','m','y','k'};

for ctVal = 1:length(currentVal);

PlotData{(ctVal*3)-2} =

handles.ResultsData(currentVal(ctVal)).timeVector;

PlotData{(ctVal*3)-1} =

handles.ResultsData(currentVal(ctVal)).outputVector;

numColor = ctVal - 7*(floor((ctVal-1)/7));

A GUI to Set Simulink Model Parameters

5-37

PlotData{ctVal*3} = plotColor{numColor};

legendStr{ctVal} = [handles.ResultsData(currentVal(ctVal)).RunName,...

'; Kf=', ...

num2str(handles.ResultsData(currentVal(ctVal)).KfValue),...

'; Ki=', ...

num2str(handles.ResultsData(currentVal(ctVal)).KiValue)];

end

% If necessary, create the plot figure and store in handles structure

if ~isfield(handles,'PlotFigure') | ~ishandle(handles.PlotFigure),

handles.PlotFigure = figure('Name','F14 Simulation Output',...

'Visible','off','NumberTitle','off',...

'HandleVisibility','off','IntegerHandle','off');

handles.PlotAxes = axes('Parent',handles.PlotFigure);

guidata(h,handles)

end

% Plot data

pHandles = plot(PlotData{:},'Parent',handles.PlotAxes);

% Add a legend, and bring figure to the front

legend(pHandles(1:2:end),legendStr{:})

% Make the figure visible and bring it forward

figure(handles.PlotFigure)

The GUI Help Button
The GUI Help button callback displays an HTML file in the MATLAB help
browser. It uses two commands:

• The which command returns the full path to the file when it is on the
MATLAB path

• The web command displays the file in the Help browser.

This is the Help button callback.

function varargout = HelpButton_Callback(h,eventdata,handles,varargin)

HelpPath = which('f14ex_help.html');

web(HelpPath);

You can also display the help document in a Web browser or load an external
URL. See the web documentation for a description of these options.

5 Application Examples

5-38

Closing the GUI
The GUI Close button callback closes the plot figure, if one exists and then
closes the GUI. The handle of the plot figure and the GUI figure are available
from the handles structure. The callback executes two steps:

• Checks to see if there is a PlotFigure field in the handles structure and if it
contains a valid figure handle (the user could have closed the figure
manually).

• Closes the GUI figure

This is the Close button callback.

function varargout = CloseButton_Callback(h,eventdata,handles,varargin)

% Close the GUI and any plot window that is open

if isfield(handles,'PlotFigure') & ishandle(handles.PlotFigure),

close(handles.PlotFigure);

end

close(handles.F14ControllerEditor);

The List Box Callback
This GUI does not use the list box callback since the actions performed on list
box items are carried out by push buttons (Simulate and store results,
Remove, and Plot). However, GUIDE automatically inserts a callback stub
when you add the list box and automatically sets the Callback property to
execute this subfunction whenever the callback is triggered (which happens
when users select an item in the list box).

In this case, there is no need for the list box callback to execute, so you should
delete it from the application M-file. It is important to remember to also delete
the Callback property string so MATLAB does not attempt to execute the
callback. You can do this using the property inspector:

A GUI to Set Simulink Model Parameters

5-39

See the description of list boxes for more information on how to trigger the list
box callback.

5 Application Examples

5-40

An Address Book Reader
This example shows how to implement a GUI that displays names and phone
numbers, which it reads from a MAT-file.

Techniques Used in This Example
This example demonstrates the following GUI programming techniques:

• Uses open and save dialogs to provide a means for users to locate and open
the address book MAT-files and to save revised or new address book
MAT-files.

• Defines callbacks written for GUI menus.

• Uses the GUI’s handles structure to save and recall global data.

• Uses a GUI figure resize function.

Managing Global Data
One of the key techniques illustrated in this example is how to keep track of
information and make it available to the various subfunctions. This
information includes:

• The name of the current MAT-file.

An Address Book Reader

5-41

• The names and phone numbers stored in the MAT-file.

• An index pointer that indicates the current name and phone number, which
must be updated as the user pages through the address book.

• The figure position and size.

• The handles of all GUI components.

The descriptions of the subfunctions that follow illustrate how to save and
retrieve information from the handles structure. See Managing GUI Data with
the Handles Structure for background information on this structure.

View the Layout and Application M-File
Use the following links to display the GUIDE Layout Editor and the MATLAB
Editor with a completed version of this example. This enables you to see the
values of all component properties and to understand how the components are
assembled to create the GUI. You can also see a complete listing of the code
that is discussed in the following sections.

Note The following links execute MATLAB commands and are designed to
work within the MATLAB Help browser. The first link adds a directory to your
MATLAB path.

Click here to display this GUI in the Layout Editor.

Click here to display the application M-file in the MATLAB Editor.

Launching the GUI
The GUI is nonblocking and nonmodal since it is designed to be displayed while
you perform other MATLAB tasks.

Application Option Settings
This GUI uses the following application option settings:

• Resize behavior: User-specified

• Command-line accessibility: Off

5 Application Examples

5-42

• Application M-file options selected:

Generate callback function prototypes

Application allows only one instance to run

Launching the GUI
You can call the application M-file with no arguments, in which case the GUI
uses the default address book MAT-file, or you can specify a MAT-file as an
argument. Specifying a MAT-file as an input argument requires modification
to the default GUI initialization section of the application M-file. The following
code shows these changes in bold.

function varargout = address_book(varargin)

if nargin <= 1 % LAUNCH GUI
fig = openfig(mfilename,'reuse');

set(fig,'Color',get(0,'defaultUicontrolBackgroundColor'));

handles = guihandles(fig);

guidata(fig, handles);

if nargin == 0
% Load the default address book

Check_And_Load([],handles)
elseif exist(varargin{1},'file')

Check_And_Load(varargin{1},handles)
else

% If the file does not exist, return an error dialog

% and set the text to empty strings

errordlg('File Not Found','File Load Error')
 set(handles.Contact_Name,'String','')
 set(handles.Contact_Phone,'String','')
end

if nargout > 0

 varargout{1} = fig;

 end

elseif ischar(varargin{1}) % INVOKE NAMED SUBFUNCTION OR CALLBACK

try

if (nargout)

[varargout{1:nargout}] = feval(varargin{:}); % FEVAL switchyard

else

feval(varargin{:}); % FEVAL switchyard

end

An Address Book Reader

5-43

catch

disp(lasterr);

end

end

Loading an Address Book Into the Reader
There are two ways in which an address book (i.e., a MAT-file) is loaded into
the GUI:

• When launching the GUI, you can specify a MAT-file as an argument. If you
do not specify an argument, the GUI loads the default address book
(addrbook.mat).

• The user can select Open under the File menu to browse for other MAT-files.

Validating the MAT-file
To be a valid address book, the MAT-file must contain a structure called
Addresses that has two fields called Name and Phone. The Check_And_Load
subfunction validates and loads the data with the following steps:

• Loads (load) the specified file or the default if none is specified.

• Determines if the MAT-file is a valid address book.

• Displays the data if it is valid. If it is not valid, displays an error dialog
(errordlg).

• Returns 1 for valid MAT-files and 0 if invalid (used by the Open menu
callback)

• Saves the following items in the handles structure:

–The name of the MAT-file

–The Addresses structure

–An index pointer indicating which name and phone number are currently
displayed

Check_And_Load Code Listing
This is the Check_And_Load function.

function pass = Check_And_Load(file,handles)

% Initialize the variable "pass" to determine if this is a valid file.

pass = 0;

5 Application Examples

5-44

% If called without any file then set file to the default file name.

% Otherwise if the file exists then load it.

if isempty(file)

file = 'addrbook.mat';

handles.LastFile = file;

guidata(handles.Address_Book,handles)

end

if exist(file) == 2

data = load(file);

end

% Validate the MAT-file

% The file is valid if the variable is called "Addresses" and it has

% fileds called "Name" and "Phone"

flds = fieldnames(data);

if (length(flds) == 1) & (strcmp(flds{1},'Addresses'))

fields = fieldnames(data.Addresses);

if (length(fields) == 2) &(strcmp(fields{1},'Name')) &

(strcmp(fields{2},'Phone'))

pass = 1;

end

end

% If the file is valid, display it

if pass

% Add Addresses to the handles structure

handles.Addresses = data.Addresses;

guidata(handles.Address_Book,handles)

% Display the first entry

set(handles.Contact_Name,'String',data.Addresses(1).Name)

set(handles.Contact_Phone,'String',data.Addresses(1).Phone)

% Set the index pointer to 1 and save handles

handles.Index = 1;

guidata(handles.Address_Book,handles)

else

errordlg('Not a valid Address Book','Address Book Error')

end

The Open Menu Callback
The address book GUI contains a File menu that has an Open submenu for
loading address book MAT-files. When selected, Open displays a dialog

An Address Book Reader

5-45

(uigetfile) that enables the user to browser for files. The dialog displays only
MAT-files, but users can change the filter to display all files.

The dialog returns both the filename and the path to the file, which is then
passed to fullfile to ensure the path is properly constructed for any platform.
Check_And_Load validates and load the new address book.

Open_Callback Code Listing
function varargout = Open_Callback(h, eventdata, handles, varargin)

[filename, pathname] = uigetfile(...

{'*.mat', 'All MAT-Files (*.mat)'; ...

'*.*','All Files (*.*)'}, ...

'Select Address Book');

% If "Cancel" is selected then return

if isequal([filename,pathname],[0,0])

return

% Otherwise construct the fullfilename and Check and load the file

else

File = fullfile(pathname,filename);

% if the MAT-file is not valid, do not save the name

if Check_And_Load(File,handles)

handles.LastFIle = File;

guidata(h,handles)

end

end

See the Menu Editor section for information on creating the menu.

The Contact Name Callback
The Contact Name text box displays the name of the address book entry. If you
type in a new name and press enter, the callback performs these steps:

• If the name exists in the current address book, the corresponding phone
number is displayed.

• If the name does not exist, a question dialog (questdlg) asks you if you want
to create a new entry or cancel and return to the name previously displayed.

• If you create a new entry, you must save the MAT-file with the File -> Save
menu.

5 Application Examples

5-46

Storing and Retrieving Data
This callback makes use of the handles structure to access the contents of the
address book and to maintain an index pointer (handles.Index) that enables
the callback to determine what name was displayed before it was changed by
the user. The index pointer indicates what name is currently displayed. The
address book and index pointer fields are added by the Check_And_Load
function when the GUI is launched.

If the user adds a new entry, the callback adds the new name to the address
book and updates the index pointer to reflect the new value displayed. The
updated address book and index pointer are again saved (guidata) in the
handles structure.

Code Listing
Here is the listing for Contact_Name_Callback.

function varargout = Contact_Name_Callback(h, eventdata, handles, varargin)

% Get the strings in the Contact Name and Phone text box

Current_Name = get(handles.Contact_Name,'string');

Current_Phone = get(handles.Contact_Phone,'string');

% If empty then return

if isempty(Current_Name)

return

end

% Get the current list of addresses from the handles structure

Addresses = handles.Addresses;

% Go through the list of contacts

% Determine if the current name matches an existing name

for i = 1:length(Addresses)

if strcmp(Addresses(i).Name,Current_Name)

set(handles.Contact_Name,'string',Addresses(i).Name)

set(handles.Contact_Phone,'string',Addresses(i).Phone)

handles.Index = i;

guidata(h,handles)

return

end

end

% If it's a new name, ask to create a new entry

Answer=questdlg('Do you want to create a new entry?', ...

'Create New Entry', ...

An Address Book Reader

5-47

'Yes','Cancel','Yes');

switch Answer

case 'Yes'

Addresses(end+1).Name = Current_Name; % Grow array by 1

Addresses(end).Phone = Current_Phone;

index = length(Addresses);

handles.Addresses = Addresses;

handles.Index = index;

guidata(h,handles)

return

case 'Cancel'

% Revert back to the original number

set(handles.Contact_Name,'String',Addresses(handles.Index).Name)

set(handles.Contact_Phone,'String',Addresses(handles.Index).Phone)

return

end

The Contact Phone # Callback
The Contact Phone # text box displays the phone number of the entry listed
in the Contact Name text box. If you type in a new number and press enter,
the callback launches a question dialog that asks you if you want to change the
existing number or cancel your change.

Like the Contact Name text box, this callback uses the index pointer
(handles.Index) to update the new number in the address book and to revert
to the previously displayed number if the user selects Cancel from the question
dialog. Both the current address book and the index pointer are saved in the
handles structure so that this data is available to other callbacks.

If you create a new entry, you must save the MAT-file with the File –> Save
menu.

Code Listing
function varargout = Contact_Phone_Callback(h, eventdata, handles, varargin)

Current_Phone = get(handles.Contact_Phone,'string');

% If either one is empty then return

if isempty(Current_Phone)

return

end

% Get the current list of addresses from the handles structure

5 Application Examples

5-48

Addresses = handles.Addresses;

Answer=questdlg('Do you want to change the phone number?', ...

'Change Phone Number', ...

'Yes','Cancel','Yes');

switch Answer

case 'Yes'

% If no name match was found create a new contact

Addresses(handles.Index).Phone = Current_Phone;

handles.Addresses = Addresses;

guidata(h,handles)

return

case 'Cancel'

% Revert back to the original number

set(handles.Contact_Phone,'String',Addresses(handles.Index).Phone)

return

end

Paging Through the Address Book – Prev/Next
The Prev and Next buttons page back and forth through the entries in the
address book. Both push buttons use the same callback, Prev_Next_Callback.
You must set the Callback property of both push buttons to call this
subfunction, as the following illustration of the Prev push button Callback
property setting shows:

Determining Which Button Is Clicked
The callback defines an additional argument, str, that indicates which button,
Prev or Next, was clicked. For the Prev button Callback property (illustrated
above), the Callback string includes 'Prev' as the last argument. The Next

An Address Book Reader

5-49

button Callback string includes 'Next' as the last argument. The value of str
is used in case statements to implement each button’s functionality (see the
code listing below).

Paging Forward or Backward
Prev_Next_Callback gets the current index pointer and the addresses from the
handles structure and, depending on which button the user presses, the index
pointer is decremented or incremented and the corresponding address and
phone number are displayed. The final step stores the new value for the index
pointer in the handles structure and saves the updated structure using
guidata.

Code Listing
function varargout = Prev_Next_Callback(h,eventdata,handles,str)

% Get the index pointer and the addresses

index = handles.Index;

Addresses = handles.Addresses;

% Depending on whether Prev or Next was clicked change the display

switch str

case 'Prev'

% Decrease the index by one

i = index - 1;

% If the index is less then one then set it equal to the index of the

% last element in the Addresses array

if i < 1

i = length(Addresses);

end

case 'Next'

% Increase the index by one

i = index + 1;

% If the index is greater than the size of the array then point

% to the first item in the Addresses array

if i > length(Addresses)

i = 1;

end

end

% Get the appropriate data for the index in selected

Current_Name = Addresses(i).Name;

Current_Phone = Addresses(i).Phone;

5 Application Examples

5-50

set(handles.Contact_Name,'string',Current_Name)

set(handles.Contact_Phone,'string',Current_Phone)

% Update the index pointer to reflect the new index

handles.Index = i;

guidata(h,handles)

Saving Changes to the Address Book from the Menu
When you make changes to an address book, you need to save the current
MAT-file, or save it as a new MAT-file. The File submenus Save and Save As
enable you to do this. These menus, created with the Menu Editor, use the
same callback, Save_Callback.

The callback uses the menu Tag property to identify whether Save or Save As
is the callback object (i.e., the object whose handle is passed in as the first
argument to the callback function). You specify the menu’s Tag property with
the Menu Editor.

Saving the Addresses Structure
The handles structure contains the Addresses structure, which you must save
(handles.Addresses) as well as the name of the currently loaded MAT-file
(handles.LastFile). When the user makes changes to the name or number,
the Contact_Name_Callback or the Contact_Phone_Callback updates
handles.Addresses.

Saving the MAT-File
If the user selects Save, the save command is called to save the current
MAT-file with the new names and phone numbers.

If the user selects Save As, a dialog is displayed (uiputfile) that enables the
user to select the name of an existing MAT-file or specify a new file. The dialog
returns the selected filename and path. The final steps include:

• Using fullfile to create a platform-independent pathname.

• Calling save to save the new data in the MAT-file.

• Updating the handles structure to contain the new MAT-file name.

• Calling guidata to save the handles structure.

An Address Book Reader

5-51

Save_Callback Code Listing
function varargout = Save_Callback(h, eventdata, handles, varargin)

% Get the Tag of the menu selected

Tag = get(h,'Tag');

% Get the address array

Addresses = handles.Addresses;

% Based on the item selected, take the appropriate action

switch Tag

case 'Save'

% Save to the default addrbook file

File = handles.LastFile;

save(File,'Addresses')

case 'Save_As'

% Allow the user to select the file name to save to

[filename, pathname] = uiputfile(...

{'*.mat';'*.*'}, ...

'Save as');

% If 'Cancel' was selected then return

if isequal([filename,pathname],[0,0])

return

else

% Construct the full path and save

File = fullfile(pathname,filename);

save(File,'Addresses')

handles.LastFile = File;

guidata(h,handles)

end

end

The Create New Menu
The Create New menu simply clears the Contact Name and Contact Phone
text fields to facilitate adding a new name and number. After making the new
entries, the user must then save the address book with the Save or Save As
menus. This callback sets the text String properties to empty strings:

function varargout = New_Callback(h, eventdata, handles, varargin)

set(handles.Contact_Name,'String','')

set(handles.Contact_Phone,'String','')

5 Application Examples

5-52

The Address Book Resize Function
The address book defines it’s own resize function. To use this resize function,
you must set the Application Options dialog Resize behavior to
“User-specified”, which in turn sets the figure’s ResizeFcn property to:

address_book('ResizeFcn',gcbo,[],guidata(gcbo))

Whenever the user resizes the figure, MATLAB calls the ResizeFcn
subfunction in the address book application M-file (address_book.m)

Behavior of the Resize Function
The resize function allows users to make the figure wider, to accommodate long
names and numbers, but does not allow the figure to be made narrower than
its original width. Also, users cannot change the height. These restrictions do
not limit the usefulness of the GUI and simplify the resize function, which
must maintain the proper proportions between the figure size and the
components in the GUI.

When the user resizes the figure and releases the mouse, the resize function
executes. At that point, the resized figure’s dimensions are saved. The
following sections describe how the resize function handles the various
possibilities.

Changing the Width
If the new width is greater than the original width, set the figure to the new
width.

The size of the Contact Name text box changes in proportion to the new figure
width. This is accomplished by:

• Changing the Units of the text box to normalized.

• Resetting the width of the text box to be 78.9% of the figure’s width.

• Returning the Units to characters.

If the new width is less than the original width, use the original width.

Changing the Height
If the user attempts to change the height, use the original height. However,
because the resize function is triggered when the user releases the mouse
button after changing the size, the resize function cannot always determine the

An Address Book Reader

5-53

original position of the GUI on screen. Therefore, the resize function applies a
compensation to the vertical position (second element in the figure Position
vector) as follows:

vertical position when mouse released + height when mouse released –
original height

When the figure is resized from the bottom, it stays in the same position. When
resized from the top, the figure moves to the location where the mouse button
is released.

Ensuring the Resized Figure is On Screen
The resize function calls movegui to ensure that the resized figure is on screen
regardless of where the user release the mouse.

When the GUI is first launched, it is displayed at the size and location specified
by the figure Position property. You can set this property with the Property
Inspector when you create the GUI.

Code Listing
function varargout = ResizeFcn(h, eventdata, handles, varargin)

% Get the figure size and position

Figure_Size = get(h,'Position');

% Set the figure's original size in character units

Original_Size = [0 0 94 19.230769230769234];

% If the resized figure is smaller than the

% original figure size then compensate

if (Figure_Size(3)<Original_Size(3)) | (Figure_Size(4) ~= Original_Size(4))

if Figure_Size(3) < Original_Size(3)

% If the width is too small then reset to origianl width

set(h,'Position',...

[Figure_Size(1) Figure_Size(2) Original_Size(3) Original_Size(4)])

Figure_Size = get(h,'Position');

end

if Figure_Size(4) ~= Original_Size(4)

% Do not allow the height to change

set(h,'Position',...

[Figure_Size(1), Figure_Size(2)+Figure_Size(4)-Original_Size(4),...

Figure_Size(3), Original_Size(4)])

end

end

5 Application Examples

5-54

% Adjust the size of the Contact Name text box

% Set the units of the Contact Name field to 'Normalized'

set(handles.Contact_Name,'units','normalized')

% Get its Position

C_N_pos = get(handles.Contact_Name,'Position');

% Reset it so that it's width remains normalized relative to figure

set(handles.Contact_Name,'Position',...

[C_N_pos(1) C_N_pos(2) 0.789 C_N_pos(4)])

% Return the units to ’Characters’

set(handles.Contact_Name,'units','characters')

% Reposition GUI on screen

movegui(h,'onscreen')

I-1

Index

A
activate figure 3-5
aligning GUI components 3-10
Alignment Tool, for GUIs 3-10
application data 4-14
application M-file 2-3, 4-3
application options 2-8
axes

multiple in GUI 5-3
axes, plotting when hidden 5-36

C
callback 2-3

arguments 2-16
callback syntax 2-15
callbacks

adding arguments 2-17
interrupting 4-20
types 4-18

check boxes 1-29
checkboxes 1-29
close request function in GUI 5-16
color of GUI background 2-18
command-line accessibility of GUIs 2-12
context menus 3-25
controls, for GUIs 1-26

E
edit text 1-29
editable text 1-29
event queue 4-20

F
FIG-files 3-29

frames 1-32

G
global data in GUIs 4-10
GUI

defining 2-3
help button 5-37
resize function 5-52
resizing 2-10
with multiple axes 5-3

GUI programming 4-2
GUIDE 2-3

adding menus 1-20
application examples 5-1
application M-file 4-3
application options 2-8
command-line accessibility of GUIs 2-12
components for GUIs 1-26
creating menus 3-19
demonstration 1-7
development environment 1-3
editing version 5 GUIs 2-6
generated M-file 2-15
getting started 1-5
grids and rulers 3-12
GUI background color 2-18
handles structure and global data 4-10
introduction 2-2
layout tools 3-2
programming menu callbacks 1-24
programming the GUI 4-2
Property Inspector 3-16
renaming files 2-21
resizing GUIs 2-10
setting properties 3-16

Index

I-2

waiting for user input 2-20
guide 3-2
GUIs, saving 3-29

H
handles structure 4-10
handles structure in GUIs 4-8
help button for GUIs 5-37
hidden figure, accessing 5-36

L
Layout Editor 3-4

controls 1-3
Layout Tools, GUI 3-2
list box

example 5-18
list boxes 1-33

M
Menu Editor 3-19
menus

adding to GUI 1-20
context 3-25
popup 1-34

M-file
generated by GUIDE 2-15

modal GUIs 4-23

O
Object Browser 3-18
opening .fig files 5-23

P
pop-up menus 1-34
popup menus 1-34
Property Inspector 3-16
push button 1-26
push buttons 1-26

R
radio buttons 1-27
renaming GUI application files 2-21
resize function for GUI 5-52
resizing GUIs 2-10

S
single instance 2-18
slider 1-30
sliders 1-30
static text 1-30

T
toggle buttons 1-27

U
user input, waiting for in GUIs 2-20
user interface controls 1-26

V
varargin in callbacks 2-17

	Getting Started with GUIDE
	GUIDE – GUI Development Environment
	GUIDE Toolset
	Understanding How to Create GUIs

	Getting Started Example
	Example – The GUI Design
	Example – Laying Out the GUI
	Creating the Layout
	Example – Programming the GUI
	Example – Testing the GUI
	Example – Adding the File Menu to the GUI
	Example – Programming the Menu Callbacks

	User Interface Controls
	Push Buttons
	Toggle Buttons
	Radio Buttons
	Checkboxes
	Edit Text
	Static Text
	Sliders
	Frames
	List Boxes
	Popup Menus
	Enabling or Disabling Controls
	Axes
	Figure

	MATLAB GUIs
	Introduction
	Creating GUIs with GUIDE
	GUI Development Environment

	Editing Version 5 GUIs with Version 6 GUIDE
	Selecting GUIDE Application Options
	Configuring the Application M-File

	Resize Behavior
	Making Your GUI Nonresizable
	Allowing Proportional GUI Resizing
	User-Specified Resize Operation

	Command-Line Accessibility
	Access Options
	Figure Properties That Control Access
	Using findobj

	Electing to Generate Only the FIG-File
	The Generated M-File
	Callback Function Names and Arguments
	Application Allows Only One Instance to Run
	Using the System Background Colors
	Waiting for User Input

	Renaming Application Files and Tags
	Using Save As
	Getting Everything Right
	Changing Component Tag Properties
	Changing the Name of Callback Subfunctions
	Changing the Name of the M-File and FIG-File

	GUIDE Layout Tools
	GUI Layout Tools
	Laying Out GUIs – The Layout Editor
	Placing an Object In the Layout Area
	Activating the Figure
	Saving the Layout
	Displaying Your GUI
	Layout Editor Preferences
	Layout Editor Context Menus

	Aligning Components in the Layout Editor
	Aligning Groups of Components – The Alignment Tool
	Grids and Rulers
	Aligning Components to Guide Lines
	Front to Back Positioning

	Setting Component Properties – The Property Inspector
	Viewing the Object Hierarchy – The Object Browser
	Creating Menus – The Menu Editor
	Defining Menus for the Menubar
	Menu Callbacks
	Defining Context Menus

	Saving the GUI
	FIG-Files

	Programming GUIs
	GUI Programming Topics
	Understanding the Application M-File
	Execution Paths in the Application M-File
	Initializing the GUI

	Managing GUI Data with the Handles Structure
	Passing Data in the Handles Structure
	Obtaining the Updated Handles Structure
	If You Are Not Using a Handles Structure
	Application-Defined Data

	Designing for Cross-Platform Compatibility
	Using the Default System Font
	Using Standard Background Color
	Cross-Platform Compatible Figure Units

	Types of Callbacks
	Callback Properties for All Graphics Objects
	Callback Properties for Figures
	Which Callback Executes
	Adding A Callback

	Interrupting Executing Callbacks
	Controlling Interruptibility
	The Event Queue
	Event Processing During Callback Execution

	Controlling GUI Figure Window Behavior
	Using Modal Figure Windows

	Application Examples
	Examples of Application Techniques
	GUI with Multiple Axes
	Techniques Used in the Example
	View the Layout and Application M-File
	Design of the GUI
	Plot Push Button Callback

	Launching a Dialog to Confirm an Operation
	Dialog Requirements
	View the Layout and Application M-File
	Implementing the GUI
	The Close Button Callback
	The Confirmation Dialog M-file
	Launch the Dialog
	Specify the Location of the Dialog
	Wait for User Response
	Executing a Callback
	Defining the Yes and No Buttons Callbacks
	Protecting the GUI with a Close Request Function

	List Box Directory Reader
	View the Layout and Application M-File
	Implementing the GUI
	Specifying the Directory to List
	Loading the List Box
	The List Box Callback

	Accessing Workspace Variables from a List Box
	Techniques Used in This Example
	View the Layout and Application M-File
	Reading Workspace Variables
	Reading the Selections from the List Box

	A GUI to Set Simulink Model Parameters
	Techniques Used in This Example
	View the Layout and Application M-File
	How to Use the GUI (Text of GUI Help)
	Launching the GUI
	Programming the Slider and Edit Text Components
	Running the Simulation from the GUI
	Removing Results from the List Box
	Plotting the Results Data
	The GUI Help Button
	Closing the GUI
	The List Box Callback

	An Address Book Reader
	Techniques Used in This Example
	Managing Global Data
	View the Layout and Application M-File
	Launching the GUI
	Loading an Address Book Into the Reader
	The Contact Name Callback
	The Contact Phone # Callback
	Paging Through the Address Book – Prev/Next
	Saving Changes to the Address Book from the Menu
	The Create New Menu
	The Address Book Resize Function

	Index

