AN EFFICIENT BLOCK FLOATING POINT IMPLEMENTATION OF THE LMS
ALGORITHM

Mrityunjoy Chakraborty, Abhijit Mitra,

E. & E. C. E. Dept.,
I. I. T. Kharagpur, INDIA.

e-mail: (mrityun, abhijit)@ece.iitkgp.ernet.in

ABSTRACT

An efficient scheme is presented for implementing the LMS-
based transversal adaptive filter in block floating point (BF'P)
format which permits processing of data over a wide dy-
namic range at a processor cost marginally higher than that
of a fixed point processor. Appropriate BFP formats for
both the data and the filter coefficients have been adopted
and adjustments made in filtering as well as weight updat-
ing operations in order to sustain the adopted format and
also to prevent overflow in both these operations jointly.
For the presented method to work properly, the algorithm
step size is to be chosen below an upper limit, which is,
however, not very restrictive when compared with the up-
per bound for convergence, thereby having marginal effect
on convergence speed.

1. INTRODUCTION

High signal to quantization noise ratio (SNR) over a reason-
ably large dynamic range is one basic requirement for dig-
ital signal processing systems in several application areas.
The block floating point (BFP) data format, proposed orig-
inally by Wilkinson [1], is one effective means to achieve
this at a moderately low processor complexity and cost.
Under this scheme, the given data is partitioned in non-
overlapping blocks and based on the relative magnitudes
of data samples in each block, a common exponent is as-
signed, which permits a floating point (FP) like represen-
tation of the data, with fixed point (FxP) like computation
within every block. The advantages provided by this sys-
tem, namely, a wide dynamic range like the F'P scheme with
hardware complexity, power requirement and cost nearly as
low as that of a FxP processor, have prompted its usage
in efficient implementation of many real time algorithms.
In the context of digital filters, several attempts have been
made in recent past to realize BFP based fixed coefficient
digital filters ([2]- [3], [6]-[10]). Some studies ([3], [4], [5])
have also been made to investigate the associated numeri-
cal error behavior. However, to the best of our knowledge,
no effort has so far been made to extend this treatment
to adaptive filters which present more complex structures
including error feedback. A BEFP treatment to adaptive fil-
ters faces certain difficulties, not encountered in the fixed
coefficient case, namely, (a) unlike a fixed coefficient filter,
the filter coefficients in an adaptive filter can not be repre-
sented in the simpler fixed point form, as the coefficients in

0-7803-7663-3/03/$17.00 ©2003 IEEE

VI-77

Hideaki Sakai

Graduate School of Informatics,
Kyoto University, JAPAN.
e-mail: hsakai@i.kyoto-u.ac.jp

effect evolve from the data by a time update relation; (b)
the two principal operations in an adaptive filter, namely,
filtering and weight updating, are mutually coupled, thus
requiring an appropriate arrangement for joint prevention
of overflow.

In this paper, we present a novel scheme for BFP re-
alization of the LMS-based transversal adaptive filter [11].
The proposed approach adopts appropriate BE'P formats for
the data and the filter coefficients separately and makes nec-
essary adjustments in both the filtering as well as weight up-
date equations so as to sustain the adopted format and also
to prevent overlow jointly in both these operations. Special
care also has been taken so that the proposed scheme works
smoothly during block-to-block transition phase when part
of the filter input vector comes from one block and the rest
from an adjacent block with the two blocks having different
exponents. The proposed method restricts the algorithm
step size to a new upper bound which is less than its well
known upper limit for convergence, i.e., 2/trR (R : input
correlation matrix). However, the new bound is not overly
restrictive when compared with the above theoretical limit
and its effect on convergence speed has been marginal.

2. THE BFP ARITHMETIC

The BFP representation can be considered as a special case
of FP format, where every non-overlapping block of N in-
coming data has a joint scaling factor corresponding to the

largest (magnitude) data sample in the block. In other
words, given a block [z1,...,ZN], we represent it as
[I1,...,IN] == [fl,...,fN].Q’y (1)
where T; (= 2;.277) represents the mantissa for{ = 1,2,..., N
and the block exponent « is defined as
~v = |loggMaz]|+ 1+ S (2)
where Max = maz(|z1],...,|zn]|), ‘|| is the so-called floor

function, meaning rounding down to the closest integer and
the integer S is a scaling factor which is needed to pre-
vent overflow during filtering operation. For the presence
of 8, the range of each mantissa is given as |T;| € [0,275).
The scaling factor S can be calculated from the inner prod-
uct computation representing filtering operation. An inner
product is calculated in BE'P format as

y(n) = w'x(n)

ICASSP 2003

[woZ(n) + ... + wr_1T(n — L+ 1)].27
y(n).2 (3)

where w is an Lth order fixed point filter coefficient vector
and x(n) is the data vector at the nth index, represented
in BFP format. For no overflow in y(n), we need [g(n)] < 1
at every time index, which can be satisfied by selecting [3]

S 2 Smin = [loga (Y _ k)] (4

where ‘[.]’ is the so-called ceiling function, meaning round-
ing up to the closest integer.

Note that, if (Bs + one sign) bits are used to represent
each mantissa within the block and if (B + one sign) bits
are used to account for the block exponent, then effectively,
under BFP system, each sample can be equivalently repre-
sented with (Bq + 1) + (By + 1)/N bits because the block
exponent is assigned only once for the whole block. This
particular strength makes this format more attractive than
FxP or FP systems.

3. THE PROPOSED IMPLEMENTATION

Consider an Lth order LMS based adaptive filter that takes
an input sequence z(n) and updates the weights as

w(n+ 1) = w(n) + ux(n)e(n) (5)

where w(n) = [wo(n)w;(n)..avz—1(n)]T is the tap weight
vector at the nth index, x(n) = [z(r)z(n — 1)..xz(n — L +
DT, e(n) = d(n) — wP(n)x(n), with d(n) being the so-
called desired response available during the initial training
period and p denoting the so-called step size paramemter.

The proposed scheme consists of two simultaneous BFP
representations, one for the filter coefficient vector w(n) and
the other for the given data, namely, 2(n) and d(n). These
are as follows:

(a) BFP format of the filter coefficient vector:

In this, at each index of time, we have a scaled representa-
tion of the filter coefficient vector as

w(n) = w(n).2¥" (6)

where 9, is a time-varying block exponent that needs to be
updated at each index n and is chosen to ensure that each
[y (n)| < % for k = 0,1,...,L — 1. If a data vector x(n)
is given in the aforesaid BFP format as x(n) = X(n).27,
where y = ex+ S, ex = |logaM | +1, M = max(|z(n—k)| |
k=0,1,...,L—1) and S is an appropriate scaling factor,
then, the filter output y(n) can be expressed as

y(n) =g(n).27 """ (7)

with 7(n) = W7 (n)X(n) denoting the output mantissa. To
prevent overflow in g(n), it is required that |g(n)| < 1.
However, in the proposed scheme, we restrict F(n) to lie

between +1 and —1, i.e., [g(n)] < 1 for reasons explained

later. Since [g(n)| < Zi;o [@ (n)||Z(n — k)|, 0 < |[Z(n —

di| do| d3] da] ds] ds] d7] ds
1| T2 Tz ZTaj Ts]| e T7| T8

(incoming data)
blockl block2

d1 d2 d3 d4 ds d6 d7 dS
1| o) T3] 24 N=4 sl Tl 7] T8

(normal blocks with block-length 4)

dy |do Vds |ds om 9v2|ds de |d7 |ds
1 |Z2 |Z3 |24 x5 1Te |Z7 | xs

(Block floating point formatted blocks
with 1 and 72)

Fig. 1. Block floating point joint scaling mechanism.

k)| < 275 and [wk(n)| < %, this implies a lower limit of S
as
Smm = [lOggL-|. (8)

(b) BFP representation of the given data:

The input data z(n) and the desired response sequence
d(n) are partitioned jointly in non-overlapping blocks of N
samples each (N > L — 1) as shown in Fig. 1, with the
ith block (i € Z) consisting of z(n), d(n) for n € Z; =
{iN,iN + 1,...,iN + N — 1}. Further, both z(n) and d(n)
are jointly scaled so as to have a common BEFP representa-
tion within each block. This means that, for n € Z;, x(n)
and d(n) are expressed as

z(n) =T(n).2", d(n)=d(n).2" (9)

where 7; is the common block exponent for the ith block
and is given as

v =ex; +S; (10)
where
er; = [logaM;]| + 1 (11)
and
M; = maz{|x(n)|, |d(n)| | n € Zi}. (12)

The scaling factor S; is assigned as per the following algo-
rithm :

Algorithm: Assign Smin = [log2L] as the scaling fac-
tor to the first block and for any (i-1)-th block, assume
Si—1 > Smin.

Then, if ex; > ex;—1, choose S; = Smin (i.e., vi = ex; +
else (i.e., ex; < exi—1)

choose S; = (exi—1 — exi + Smin), S.t. Vi = exi—1 + Smin.
Note that when ex; > exi;—1, we can either have ex; +
Smin > 7vi—1 (Case A) implying v > 7i—1, or, ex; + Smin <
~i—1 (Case B) meaning ; < 7;—1. However, for ex; < ex;_1
(Case C), we always have v; < yi_1.

Additionally, we rescale the elements Z(iN — L + 1),---,
Z(iN — 1) by dividing by 28% where Ay; = v — Yi_1.
Equivalently, for the elements z(iN — L+1),---, z(¢N —1),
we change Si—1 to an effective scaling factor of S|_; =

VI-78

z(n) Block z(n) =/ (n)
—_ M Formatting Q z—1
d(n)=P Algorithm —.I'

9~ A

Lyl Finite Precision

(Block-floating-point)
Adaptive Algorithm

A

Fig. 2. Block floating point implementation of a 2-tap LMS
based adaptive filter.

Si—1+ A~;. This permits a BFP representation of the data
vector x(n) with common exponent «; during block-to-block
transition phase too, i.e., when part of x(n) comes from the
(¢ — 1)th block and part from the ith block. In practice,
such rescaling is effected by passing each of the delayed
terms T(n —), j = 1,..., L — 1, through a rescaling unit
that applies A7; number of right or left shifts on Z(n — j)
depending on whether A-y; is positive or negative respec-
tively. This is, however, done only at the beginning of each
block, i.e., at indices n =N, i € Z. For a 2-tap filter, this
is shown in Fig. 2, where an additional unit ‘Q’ is used to
indicate quantization operation. Also, note that though for
the case (A), Avy; > 0, for (B) and (C), however, Avy; < 0,
meaning that in these cases, the aforesaid mantissas from
the (i-1)-th block are actually scaled up by Q=AY Tt s,
however, not difficult to see that the effective scaling factor
S{_y for the elements x(iN — L + 1),---, z(¢N — 1) still
remains lower bounded by Sp.in, thus ensuring no overflow
during filtering operation. The output error e(n) is then
evaluated as e(n) = €(n).27 ¥ where the mantissa (n) is
given as

g(n) =d(n).2 ¥ —7(n). (13)
Clearly, computation of €(n) involves an additional step of
right-shift operation on L_l(n) — an operation that comes up
frequently in F'P arithmetic. However, since in an adaptive
filter, filter coefficients are derived from data and thus can
not be represented in the 'xP format when data is given
in a scaled form, such a step seems to be unavoidable. It is
easy to see that |[é(n)| < 1, since,

[e(n)] < ld(n)|-27¥" + [g(n)]
—Yn
2 7 +% (14)

as 275 < % Except for ¥, = 0 and L = 1, the R.H.S. is

< 2*(Si+wn)+ % <

always less than or equal to 1.
For the above description of e(n), x(n), d(n) and w(n), the
weight update equation (5) takes the following form:

w(n +1) =v(n).2¢" (15)

where
V(n) = W(n) 4+ uX(n)e(n).2%". (16)
As stated earlier, W(n+1) is required to satisfy [wg(n+1)| <
% for k = 0,1,...,L — 1, which can be realized in sev-

eral ways. Our preferred option is to limit V(n) so that
[7k(n)| <1,k =0,1,...,L—1. Then, if each Tx(n) happens
to be lying within :I:%, we make the assignments:

Wr+1)=v(n), Yn+1=Yn. (17)
Otherwise, we scale down V(n) by 2, in which case
1
w(n+1) = §V(n), Ynt1 =Yn + L. (18)

In order to have [Bx(n)| < 1, &k = 0,1,..., L — 1 satisfied,
we observe that [Tx(n)| < [@e(n)| + u|T(n — k)|[e(n)].227.
Since |[wk(n)| < %,k =0,1,...,L —1, it is sufficient to have
pZ(n—k)|[e(r)].27* < L. Taking the upper bound of [¢(n)
as [27(si+w”)+%.27si] and recalling that [T(n—k)| < 27,
this implies
2725115

R e
It is easy to verify that the above bound for g is valid not
only when each element of X(n) in (16) comes purely from
the i-th block, but also during transition from the (i-1)-
th to the i-th block with ex; > ex;_1, for which, after
necessary rescaling, we have S/_; > S; = Spin implying
[Z(n—k)| <2 % and thus g(n) < £.27%. For ex; < exi_1,
however, the upper bound expression given by eq. (19) gets
modified with ex; replaced by ex;_1, as in that case, we
have v; = ex;—1 + S 1 with 8/_; = Smin < S; meaning
|Z(n — k)| < 275-1 and thus 7(n) < %.27‘91{*1, leading to
[e(n)] < [27Siat¥n) 4 L 9= Sina],

From above, we obtain a general upper bound for p by
equating ¥, to its lowest value of zero and replacing ex; by
€Tmar = maz{ex; | i € Z} in eq. (19). The general upper
bound is given by :

(19)

9~ 2eTmaz
L+2

The above bound is actually less than 2/¢trR which is the
upper bound for u for convergence of the LMS algorithm.
To see this, we note that |z(n)| < 2°*™<= and thus F[z%(n)] <
22¢®maz This implies trR. < [.22°*me= and thus 2/trR. >
Q7 2e%maz /(] 4 9),

Finally, for practical implementation of V(n) as given in
eq. (16), we need to evaluate the product uZ(n—k)e(n)2%:
in such a way that no overflow occurs in any of the inter-
mediate products. This is realized via the following steps :

p< (20)

stepl — 1.22°% = uy (say),
step2 — p1[T(n — k)25 = Z1(n — k) (say), and

step3 — [T1(n — k)e(n)].25 = €1(n) (say).

VI-79

045 T T

04
: SOLID: Corventional LMS Algarithm
035 |

DASH-DOTTED: Proposed Implementation

03

0251

MSE

02F

0151

01F

0051

0] 100 200 300 400 500
Number of iterations

Fig. 3. Learning curves for conventional LMS algorithm
and proposed BEFP implementation scheme.

Once again, for the block-to-block transitional case with
er; < exi—1, ex; in step 1 and S; in steps 2 and 3 are to
be replaced by ex;_1 and Si_;(= Smin) respectively. It is
then easy to check that each of the intermediate products
computed in steps 1-3 above has magnitude less than one
and thus there is no intermediate overflow.

4. DISCUSSIONS AND CONCLUSIONS

In this paper, we have presented a method for efficient
implementation of the LMS algorithm using block float-
ing point arithmetic whose usage in digital filter realization
has so far remained limited to fixed coefficient filters only.
The proposed scheme requires mostly FxP like operations
and thus enjoys computational simplicity, less cost and low
power requirement like a F'xP based implementation. How-
ever, presence of an exponent with every block gives it the
additional strength of processing capability over a wide dy-
namic range as is common with a FP processor. Simulation
of the proposed method in finite precision in a variety of
contexts has also yielded satisfactory results. We present
here the simulation results for a system identification prob-
lem, where the signal y(n) observed at a system output was
generated as y(n) = z(n)+0.652(n—1)+0.252(n—2)+v(n),
with z(n) : system input with variance o7 = 1 and v(n)
: observation noise (white) with variance o2 = 0.01. To
decide about the value for p, we observed that M. =
maz{z(n),y(n)|n € Z} can be safely taken as £1.990; so
as to contain almost 95% of the samples of z(n) and y(n).
This gives rise to eXmar = 1 and with L. = 3, we then have
= 0.05. With this value of u, the algorithm was first sim-
ulated in ‘infinite’ precision and then in finite precision with
9 (i.e., 148) bits for the mantissa and 4 (i.e., 1+3) bits for

the exponent. Fig. 3 demonstrates the simulation results

VI -80

by plotting MSE versus number of iterations for both the
infinite precision and the finite precision cases. As is clearly
seen, the algorithm convergence has been largely unaffected
by moving from infinite to finite precision — however, the
excess MSE is more in latter due to the presence of numer-
ical errors. Efforts are now underway to analyse the effects
of numerical errors on the proposed implementation.

5. REFERENCES

[1] J. H. Wilkinson, Rounding Errors in Algebraic Pro-
cesses. Englewood Cliffs, NJ: Prentice-Hall, 1963.

[2] K. R. Ralev and P. H. Bauer, “Realization of Block
Floating Point Digital Filters and Application to Block

Implementations,” IEEE Trans. Signal Processing, vol.
47, no. 4, pp. 1076-1086, April 1999.

[3] K. Kalliojarvi and J. Astola, “Roundoff Errors in
Block-Floating-Point Systems,” [EEE Trans. Signal
Processing, vol. 44, no. 4, pp. 783-790, April 1996.

[4] P. H. Bauer, “Absolute Error Bounds for Block Float-
ing Point Direct form Digital Filters,” IEEE Trans.
Signal Processing, vol. 43, no. 8, pp. 1994-1996, Aug.
1995.

[5] P. Bauer, “Asymptotic behavior of digital filters with
block floating point arithmetic,” in Proc. 1994 Int.

Conf. Accoust., Speech, Signal Processing, Adelaide,
Australia, Apr. 1994, pp. I11.609-111.612.

[6] S. Sridharan and G. Dickman, “Block floating point
implementation of digital filters using the DSP56000,”

Microprocess. Microsyst., vol. 12, no. 6, pp. 299-308,
July-Aug. 1988.

[7] S. Sridharan and D. Williamson, “Implementation of
high order direct form digital filter structures,” IEEE
Trans. Circuits Syst., vol. CAS-33, pp. 818-822, Aug.
1986.

[8] D. Williamson, S. Sridharan and P. G. McCrea, “A
new approach to block floating point arithmetic in re-
cursive digital filters,” IEEE Trans. Circuits Syst., vol.
CAS-32, pp. 719-722, July 1985.

[9] F. J. Taylor, “Block Floating Point Distributed F'il-
ters,” IEEE Trans. Circuits Syst., vol. CAS-31, pp.
300-304, Mar. 1984.

[10] A. V. Oppenheim, “Realization of digital filters using
block floating point arithmetic,” [EEE Trans. Audio
Electroaccoust., vol. AE-18, no. 2, pp. 130-136, June
1970.

[L1] S. Haykin, Adaptive Filter Theory. Englewood Cliffs,
NJ: Prentice-Hall, 1986.

