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Abstract-In this communication, a new approach is pro- 
posed for the design of a sliding feedback control scheme reg- 
ulating nonlinear converters in AC signal generating task. 
The approach is based on the specification of a switching 
control law which accomplishes indirect asymptotic sinu- 
soidal output voltage generation for the converters. The 
control scheme is found to be partially robust to perturba- 
tions, namely variations on the input voltage or/and in the 
load. 
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I. INTRODUCTION 

This communication is concerned with nonlinear power 
converters and variable structure systems. We apply tech- 
niques of sliding control to nonlinear power converters in 
order to generate periodic output voltages. The basic non- 
linear converters we deal with are the boost and the buck- 
boost. It is assumed that they are controlled in sliding 
mode by a time-periodic switching surface, which will be 
rewritten as an autonomous one. Time-periodic switch- 
ing surfaces seems to be necessary if we are interested in a 
global treatment instead of a local one and, by this way, be- 
ing able to derive a closed curve as the autonomous sliding 
surface. 

We will have gone from tracking to generation; the in- 
verse function theorem becames a basic tool in this way. 
The inverse function theorem presumes a condition on the 
derivative (it must be different from zero), in this case it 
is reflected in the design of the control function. It is not 
enough to  take into account the sliding surface, the curve of 
equilibrium points have to be also considered. Moreover, it 
could be done a sliding motion on it, implying a not desired 
behaviour. 

Another requirement for our system is to be robust in 
front of variations of the load and/or perturbations in the 
input voltage. Making use of the form of the control vector 
field, variations on the load can be considered as perturba- 
tions in the input voltage and to  be counteracted by extern 
injections of voltage. 

The reader is referred to [6] for elementary defini- 
tions and concepts inherent to sliding regimes theory used 
throughout this article, it  is referred to  [5] for the applica- 
tion of sliding control mode to the power converters. Pa- 
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pers closely related with this are [4] and [l] that will be 
presented in the CDC’96 conference. 

This communication is organized as follows, in section 2 
the elementary nonlinear power converters are presented as 
well as the hypotheses we assume throughout the paper. In 
section 3 the autonomous sliding surface and the switching 
control law are derived. Section 4 is devoted to make the 
control system robust. Finally, computer simulations are 
shown in section 5. 

11. NONLINEAR POWER CONVERTERS 

DC-to-DC switching power converters constitute a nat- 
ural field of application of the sliding mode theory accord- 
ing to the abrupt topological changes that the circuit com- 
manded by a discontinuous control action undergoes. 

The nonlinear basic power converters boost and buck- 
boost can be described by the dynamical system 

The values of the parameters appearing in the former 
equation for the nonlinear converters boost and buck-boost 
are 

boost converter. y = 0, 6 = b, 
buck-boost converter. y = b,  6 = 0,  

E,  w1 = & and b =  E where, WO = 
The elimination of the control U in (1) yields a differential 

equation that relates the dynamics of the state variables. 
When the goal of having 2 2  follow a given signal X2d is 
reached, the variable 21, proportional to  the input current, 
satisfies an Abel’s equation of the second kind: 

77. 

which, in general, is analytically unsolvable. 
An exact treatment of the tracking problem with a slid- 

ing surface S ( x ,  t )  := x 1  - k ( t )  involves k ( t )  being a so- 
lution of (2). Since numeric simulations for usual testing 
functions X2d show the domination of the b x l  term, 5 1  ap- 
pears as a straight line with slope b that grows indefinitely. 
Thus the input current tends to infinite and an impossible 
physical implementation occurs. Hence, not bounded 51 
time-depending sliding surfaces cannot offer a satisfactory 
solution to  the tracking output voltage problem in dc-to-dc 
nonlinear basic converters. 

Nevertheless, a suitable change of variable allows the 
writing of (2) as a polinomyal differential equation that 
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is found to have a maximum of one periodic solution [3 ] .  It 
was also observed that, adjusting the initital conditions for 
a particular X Z d ,  solutions were found with an initially pe- 
riodic aspect before the beginning of the raise. These two 
aspects lead to the  conjecture that, assuming X 2 d  to be 
periodic, there is a periodic solution k ( t )  of (2), that can 
be approximated with a truncated Fourier developpment 

Finally, a sliding control mode based on the time- 
dependent sliding surface S ( z , t )  := z1 - k ( t )  = 0,  
(S(z, t )  := 11 - k,(t) = 0 in practice) can be designed. 
It can be proved with some additional hypotheses on X 2 d  

in the buck-boost case, that  in the ideal sliding dynamics, 
the error 152 - 5 2 d l  tends asymptotically to zero. 

Summarizing, the assumption we presume from now on 
is 

T h e  control  po l i cy  def ined by t he  sur face  

S(5, t )  := 5 1  - k ( t )  = 0 ( 3 )  

a n d  t h e  control  law 

prov ides  us with a s l iding m o t i o n  o n  t h e  surface S ( x ,  t )  = 0 ,  
a n d  in ideal  s l iding d y n a m i c s  t h e  error 1x2 - X 2 d l  t e n d s  
asympto t i ca ly  t o  ze ro  

Note that  zero should be substituted by E when k a ( t )  is 
used instead of k ( t ) .  

111. GENERATING SIGNALS 

If i ~ d ( t )  # 0, by the inverse function theorem t = t ( 2 2 )  

and the former time-dependent sliding surface can be writ- 
ten as S(z, t ( z2 ) )  := 51 - k ( z 2 )  = 0 beeing autonomous. 
The discontinuous control policy which, with the switching 
surface (3) ,  provides a time-dependent control scheme, can 
also be expressed as a function on 5 1 ,  2 2 .  This autonomous 
control policy steers the system to the switching surface, 
providing a sliding motion on it and the ideal sliding dy- 
namics arranged in advance. 

Actually, the ideal sliding dynamics will be parametrized 
as 

5 1  = dl(t)  5 2  = 42(t)  

Then the inverse function theorem can be used everywhere 
except when k l ( t )  = 0 and i z ( t )  = 0 that is, it cannot 
be used on the curve of equilibrium points C(z1,zz) = 0. 
In fact, the  control policy depends also on the sign of the 
function C ( s l , 5 2 ) .  

Applying the former procedure to a nonlinear converter 
from which we wont an output voltage as 

z2d = A sin(&) + B 

and approximating the periodic solution k ( t )  of (2) by a 
truncated Fourier expansion k a ( t ) ,  we have 

C(z1, 5 2 )  = (-wox:lb + w17zz  + w o w l z ; )  = 0 

Fig. 1. Undesired behaviour in C(z1, 5 2 )  n S(q ,  5 2 )  

S ( Z l , S 2 )  := 
2 

= [XI - a0 - b l  (9) - a2 (1 - 2 (9)2)] - 

- (a1 + 2b2 (9))' (1 - (v)2) = 0 
U ( z l r 5 2 )  = 

0 if ( ~ 0 5 2  + 7 ) C ( ~ l , z 2 ) s ( 5 1 , ~ 2 )  > 0 = {  1 if ( W O 5 2  + Y)C(Zl, 5 2 ) S ( 5 1 r 5 2 )  < 0 
As in [a] ,  there can be found conditions on the parame- 

ters A ,  B and w in order to a sliding motion exists. How- 
ever it should be mentioned too that the study made in 
the time-dependent case suffices; on the other hand, an an- 
alytical study cannot be done because the exact solution 
of equation (2) has had to be approximated by k a ( t ) .  

Simulations are in perfect agreement with this results. A 
sliding motion can be  observed on the designed surfaces. 

Remark that the equation of the curve of equilibrium 
points C(z1,z~)  appears in the definition of the control as 
a factor in the decision of changing values for u ( z 1 , 5 2 ) .  It is 
the cause of a not desired phenomenon that  can be observed 
in a neigborhood of the intersection between C(z l ,  5 2 )  and 
S(z1, 5 2 ) .  Namely, depending on how trajectories cut the 
curve C ( z l ,  5 2 )  a sliding motion appear on it. The prob- 
lem has been solved by keeping the control value for some 
consecutives sample periods. 

In figure 1 there is sketched this phenomenon, its effect 
on the output voltage gets a sudden lost of signal generation 
ending with an equilibrium point, as it can be seen in figure 
2. 

IV. ROBUSTNESS 

This section shows how we make our system robust in 
front of variations on the load. It is assumed that the 
input voltage can be modified by the addition of a voltage 
compensator that will counteract the variation on the load. 

It is well known that the sliding control, in fact the ideal 
sliding dynamics, is robust in front of perturbations in- 
cluded in the input channel distribution A,. Hence, two 
perturbations can be considered equivalent if their differ- 
ence belongs to A,. In the light of that, variations on the 
load are equivalent to perturbations in the input voltage, 
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Fig. 2. Normalized output voltage. Undesired behaviour. 

which will be appropriatelly counteracted. 
Namely, from equation 1 and the former comments, per- 

turbation vector fields for the basic nonlinear converters 
can be described as 

P(X1, “2) = (6 + ?., -31x2) 

where 6 = 6,- + i, y = ynon + 9 and w1 = ~ 1 , ~ ~ ~  + 3 in 
the perturbed system. 

On the other hand, the input channel distribution is gen- 
erated by the vector field 

g(z1,22) = ( W O 1 2  + 7 ,  --WO.l) 

thus the perturbation vector field p(x1, z2) is equivalent to 

which, in turn is counteracted by substracting the compen- 
sator 

from the input signa! 
6 + yu 

As it has been deduced by the reader, we also assume 
that the value of the parameters are known, as well as the 
load variations and the input voltage perturbations. 

V. EXAMPLES 
A .  Boost converter 

The following simulations correspond to a boost con- 
verter with nominal parameters W O  = 502.52, w1 = 454.55, 
b = 372.67, and the desired signal X 2 d  = 1.2 + 0.2 sin(500t) 
which correspond to  L = 18mH. ,  C = 220pF.,  R = 10R. 
and E = 50V.. 

Figure 3 shows a trajectory which evolves on the slid- 
ing surface once the system is controlled by the former 
described switching law. 

Current 

Phase state diagram. Controlled dynamics Fig. 3. 
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Fig. 4. Normalized output voltage under load variation 
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Fig. 6. Voltage compensator counteracting the load variations 
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Fig. 7 .  Phase state diagram. Controlled dynamics under load varia- 
tions 

Figure 4 shows the output voltage in front of a load vari- 
ation, the load is assumed to be a pulsed signal of height 
7 and initial condition 100, it is shown in figure 5. Figure 
6 illustrates the source to  be used in order to compensate 
the load perturbations. 

B. Buck-boost converter 

The following simulations correspond to a buck-boost 
converter with nominal parameters W O  = 502.52,  w1 = 
454.55, b = 372.67, and the desired signal X 2 d  = 1 + 
0.2 sin(500t) which correspond to L = 18mH. ,  C = 2 2 0 p F . ,  
R = 10R. and E = 50V.. 

Figure 7 shows a trajectory which evolves on the slid- 
i n g  surface i n  f r o n t  of load var ia t ions ,  once  the system is 
controlled by the former described switching law. 

Figures 8 and 9 show the input current and the out- 
put voltage, the  load is assumed to be a pulsed signal of 
height 10 and initial condition 8R. Figure 10 illustrates the 
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Fig. 8. Normalized input current under load variation 
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Fig. 9. Normalized output voltage under load variation 
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Fig. 10. Voltage compensator counteracting the load variations 
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VI. CONCLUSIONS 
In this communication it has been proposed an au- 

tonomous sliding feedback control scheme regulating non- 
linear converters in AC signal generating task. The au- 
tonomous sliding surface is derived in the light of the im- 
plicit function theorem from a time-dependent one that is 
assumed to exist fulfilling a sliding motion. 

This procedure is specified for nonlinear basic converters. 
It has been observed an undesired behaviour that can ap- 
pear in a neigborhood of the intersection between the curve 
of equilibrium points and the sliding surface. It has been 
proposed too a design to  avoid this behaviour. The con- 
trol scheme is found to be robust in front of perturbations, 
namely variations in the load. 
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Fig. 11. Voltage compensator counteracting the load variations 

source to be used in order to compensate the load pertur- 
bations. The pulsating error; that is, the relative U ' S  error 
W(obta ined)-w W - 0.003. The error Iz2 - 12dl  can be seen in 
figure 11. Note that  it remains less than 0.015 in spite of 
the load variations. 
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