
(eeye © 2015)

Please don’t use this hardware design and accompanying software for commercial purposes.
You can use this design and software for your own private use. 

BIG DIGIT LED DOT MATRIX CLOCK
(eeye © 2015 )

Salient features

30x7 Dot Matrix, uses 2.0” high brightness, displays
for good visibility even in bright daylight

Extremely low power operation (0.75W)
150mA at max brightness and 20mA at the min
brightness.

FAIL SAFE monitoring of microcontroller clock to
ensure safe operation of the LED Dot Matrix

20kHz, 10 bit PWM for flicker free brightness
control (auto and manual mode, user
preferences, see text)

70Hz display refresh rate to ensure flicker free visuals
and animations

20 levels of manual brightness adjustment

Interlaced scanning to eliminate display artifacts
(e.g., skewing of characters)

Date display in fully expanded plain English (e.g.,
Thursday 20th November 2014)

12/24 hour clock operation Function to adjust deviation of the clock.
(Adjustment up to 2 minutes / day deviation
possible see text)

Adjustable scroll rate of the display from 20ms to
100ms (user preference)

User preferences with graphical symbols.

Static and scrolling clock. Static clock from 8:00 PM until 6:00AM 
Hourly Chime and Alarm functions (user preference) Battery backup of the clock and user preferences

using a regular 3V coin cell

(eeye © 2015)

Please don’t use this hardware design and accompanying software for commercial purposes.
You can use this design and software for your own private use. 

Figure 1: Schematic of the clock

Figure 1, shows the entire clock. The circuit that drives the dot matrix display is fairly simple. It consists
of a microcontroller (U3), a bunch of shift registers (U6, U9, U12, U15) and finally the row multiplexer
(U5) with the associated row drivers (Q2 to Q8). The remaining blocks are there to acquire the
temperature, ambient light and user interactions.

Row Driver

Let’s understand the uniqueness of this row driver. If you look at most of the designs presented on the
internet, they all invariably use the 74LS138 for multiplexing the row drivers. The problem with the
74LS138 is that firstly it is a negative logic, which means the selected row goes low. Secondly, each and
every transistor in the row driver will need a resistor at the base to get the bias current going (remember
transistors are current driven devices [IC = βIB]). Lastly, the 74LS138 is not CMOS chipset, which in turn
means that we will need more power than the microcontroller to keep that chip running. Honestly, I’m
not a great fan of negative logic, unless it is absolutely necessary to do it. Hence here we have chosen
the CD4051 (U5), which is a CMOS chip and has positive logic. The neat feature of this chip is that the
voltage applied on pin 3 is the output available on the outputs (X0 to X7). Hence, by putting a resistor
(R4) between +5V and pin 3 of U5, we have essentially created the bias current needed for those row
driver transistors. At any given point in time, only one row transistor is active (due to multiplexing) all we
need is just one resistor to set the bias current for all those transistors. Cool isn’t it.

(eeye © 2015)

Please don’t use this hardware design and accompanying software for commercial purposes.
You can use this design and software for your own private use. 

The row driver transistors have to carry the entire current to the individual dots. Hence the need for
selecting the right driver transistors becomes critical. In this case the SL100 (NPN) transistor has been
selected. Why? Assume that all the LED’s on a row are light up. In this case we have 30 LEDs, each one
drawing 10mA, which makes it 300mA. The SL100 has an IC of 500mA, which is well within the limits of
our design. You can use any other NPN transistor that meets this requirement, for example 2N2222A can
be used. It is normal for these drivers to become warm during operation and should not be construed as
a malfunction.

Column Driver

The column drivers (U6, U9, U12, and U15) are also unique in the sense that they are shift registers with
built in current sinks. The current sinks are not the usual Darlington transistor, but MOSFETs with open
drain. This gives the chip the ability to sink 150mA continuously per pin, when all the pins are turned on.
We need this capability as each LED at full brightness is driven to 70mA pulsed current and we have 8
LEDs being driven by one chip. It is worth noting that even though we are pushing 70mA continuous
current, in reality each LED will see only 10mA as the display is multiplexed. So there is nothing to fear
that the LED’s will burn out. Unless, you turn on the matrix without the microcontroller, it is possible to
destroy the dot matrix due to the uninitialized behavior of the electronics and the high continuous
current in the LEDs.

The column drivers are cascaded to achieve the 30 dot string (the serial output from U15 is connected to
the serial input of U12 and so on). To get a fast data transfer rate, the microcontroller communicates
with the column drivers over SPI using the microcontroller built in SPI hardware. The SPI protocol needs
3 lines to achieve its objective. In this case the lines DATA, SRCK and RCK are used for the SPI. The data
for the shift registers is sent on the DATA line, the serial clock is sent over the SRCK. Once the entire data
is clocked out, the RCK is toggled, so that the data is latched into the shift register.

Time Keeper (Real Time Clock / Calendar)

The hard work of time keeping together with the day, date, month and year is done by the RTC chip
(U4). The RTC chip takes care of the adjusting for the days in the month, compensates for leap years and
it is fully programmed until 2100 (enough for a lifetime). It goes without saying that the clock is as
accurate as the RTC and the crystal that drives it. So it is very important to ensure that the crystal used
to drive the RTC is accurate and is per the specifications of the chip. Fortunately, most of the watch
crystals are accurate enough to give a deviation of about 2 seconds/day. Well you may say 2
seconds/day is a lot isn’t it? Yes, it definitely is ‘cause in 30 days we have a clock that is running either 1
minute fast or slow (depending on how the crystal is behaving). Thankfully, this clock has a feature were
in you can adjust the deviation due to the crystal. Once set the clock is accurate to the second.

The power consumption of this RTC chip (U4) is extremely low (about 1.5mA) with 5V supplied. When
powered by the backup battery the chip draws a mere 500nA resulting in a battery backup that will last
for 10 years. The RTC is interfaced to the microcontroller with the I2C interface. The microprocessor that
does the calculations on the RTC is also used for communicating with the external world (via I2C). To
ensure that the RTC is able to perform its job accurately, the data from the RTC is requested once every

(eeye © 2015)

Please don’t use this hardware design and accompanying software for commercial purposes.
You can use this design and software for your own private use. 

second. This way we can guarantee that the RTC is not overloaded and is able to perform its job
accurately.

Temperature measurement

The ambient temperature is measured with the help of LM35 (U2). The temperature sensor is factory
calibrated and is pretty accurate to 0.4ᴼC. The sensor outputs 10mV per degree rise in temperature
which is easily measured by the onboard 10bit ADC on the microcontroller. The output from this sensor
is connected to pin 2 of the microcontroller (U3), which is configured as an ADC. The ADC samples the
sensor for 18ms and provides the averaged value, which is converted into the appropriate humanly
understandable centigrade value.

Brightness control (Ambient Light measurement)

The brightness of the dot matrix is adjusted automatically based on the ambient light conditions. The
ambient light is measured by the LDR (U1). The resistance of the LDR changes with the amount of light
that is impressed on the sensor. This property has been utilized in the traditional way, with a resistive
divider network, comprising of the LDR and R2. The change in resistance of the divider network results
in variable output voltage. This voltage from the divider network is fed to pin 3 of the microcontroller
(U3), which is configured as an ADC. To avoid unwanted display blinking the voltage is sampled 10 times
and averaged. The changing voltage influences the PWM which controls the OE (output enable) pin of
the shift registers (U6, U9, U12 and U15), that in turn sets the brightness for the display. On a side note,
the brightness can also be controlled manually by way of user preference setting.

The capacitors C2 and C4 serve as a discharge path for the microcontroller’s internal sample and hold
capacitor. Without these capacitors, the internal sample and hold capacitor does not have a discharge
path and due to the ADC being multiplexed, the resulting digital output is not accurate. Additionally, the
capacitors server to stabilize the input signals by removing spikes and noise. Using too high/low value
for these capacitors will result in over/under damping of the signals. The values shown in the schematic
were chosen to critically damp the system.

Alarm & Chime

The alarm and chime functionality is implemented using D2, D3, R1, Q1 and LS1. The D2 and D3 are
wired as OR gate and the outputs from Alarm and Chime are fed into them. Q1 acts like a switch to turn
on or off the buzzer (LS1). R1 is used to limit the current to Q1.

Hourly chime is implemented as two short beeps of 100ms each. The Alarm function is implemented as
implemented as beeps of 500ms. The Alarm keeps sounding until the user presses any key to cancel it.

Microcontroller

The heart of the clock is the microcontroller (U3), which is the PIC16F767. This chip has 8K of flash and
368 bytes of RAM. It contains a 10 bit ADC module, a 10 bit PWM module, the usual input/output ports
and most of all it has the “fail safe clock monitoring”. Look at Figure 1, and you can see that the

(eeye © 2015)

Please don’t use this hardware design and accompanying software for commercial purposes.
You can use this design and software for your own private use. 

microcontroller is interfaced in the usual way to the various push buttons (S1 to S8). As explained
previously the ADC and the shift registers are also connected to the microcontroller. The master reset
(MCLR pin) is connected to +5V via a 1K (R3) resistor.

The unique feature of this particular microcontroller is it’s “fail safe clock monitoring”. The fail safe clock
operates at a reduced frequency the moment the main external oscillator fails. This feature has been
utilized to safeguard the LED dot matrix in case of microcontroller oscillator failure. (Remember our
earlier discussion that each LED is being pulsed with 70mA current. Should the microcontroller fail, the
multiplexing of the dot matrix stops resulting in 70mA of continuous current flowing through each LED
killing the dot matrix instantly). The fail safe feature of the clock operates as follows. During startup the
failsafe clock monitors the oscillator startup. If the oscillator does not start up, then a hardware error is
set. This error is processed in the software and the microcontroller is switched to the reduced internal
clock. This internal clock then provides the multiplexing of the display (however at a reduced rate, which
is obvious as the display can be seen flickering). The message “Service Clock!!” is displayed continuously.

If the oscillator is okay at startup, then the microcontroller wakes up and the clock is operating. Should
the oscillator fail during normal operation, then the software triggers the reduced clock operation. All
current operations are cancelled and the message “Service Clock” is displayed.

Construction

The clock can be constructed on a prototype board; however it is advisable to use a PCB. Firstly, the
sheer number of wires from the dot matrix display that need to be wired in the correct order is one
challenge. Secondly, to ensure accuracy the quartz crystal to the RTC needs some careful consideration
about its placement and isolation. Lastly, the I2C and SPI interface need careful consideration to ensure
reliable data transmission as they are operating at 100 kHz and 19 kHz respectively.

Software and operation

To keep the article manageable and also to help you build the clock successfully, the software has been
released as a precompiled HEX file. The software is a downloadable HEX file, which has all the fuse
settings for the microcontroller fully programmed. You’ll need a programmer that can program the
PIC16F767 including the fuses.

On power up, the software does basic initialization of the hardware, and the display should come to life
with the scrolling message “The time is…..” If this does not happen, see the troubleshooting section. At
first power on the RTC is programmed to the default 24 hour operations and it displays 0:00 hours on 1st
Jan 2000.

Setting the Time and Date

As an example let’s say we want to set the time to 10:35AM on Thu, 20th Nov 2014. To set the time and
date do as follows:

(eeye © 2015)

Please don’t use this hardware design and accompanying software for commercial purposes.
You can use this design and software for your own private use. 

(a) Press SET button.
(b) Display indicates “Set Time & Date?”
(c) Press ENTER button. (The ENTER button confirms that you are entering the SET TIME AND DATE

function).
(d) Display indicates 24. This is the default operation mode of the RTC (24 H mode). Use the UP/DN

keys to navigate between AM/PM/24 hours. For the above example use the DN button until the
display indicates AM.

(e) Press SET, the display indicates “H->01” (Hours)
(f) Press UP key until the display shows “H->10”. If you go past the 10, don’t worry press DN button

to come back.
(g) Press SET button, the display indicates “M->00” (Minutes)
(h) Press UP key until display shows “M->35”. If you go past 35 don’t worry press DN button until it

reaches 35.
(i) Press SET button, the display indicates “S->00” (Seconds). (If you want to adjust seconds, use the

UP/DN keys as described above for the hours/minutes setting.)
(j) We are not adjusting seconds, so press SET key.
(k) The display shows “Yr->14” (Year). The current year is 2014, so nothing to do here, press SET

button.
(l) The display shows “Mn-> 01” (Month). The months start from Jan = 01 until Dec = 12. For the

above example press UP until the display indicates “Mn->11” (which is Nov).
(m) Press SET button. The display indicates “Dt->01”. Use the UP key until the display shows “Dt-

>20”. (The number of days in the month is automatically calculated, so that the month of Feb in
normal year will go until 28 and for leap year it will go up to 29 and so on for the other months.)

(n) Press SET button. The display indicates “Dy->Su”. Press the UP button until the display indicates
“Dy->Th”. (Su = Sunday, Mo = Monday…. and so on.)

(o) Press SET button. The RTC is updated and the message “Saved” will be displayed for one second.
(p) Now you are done. The clock is programmed to the time and date in the example. The scrolling

will be resumed displaying the current time and date programmed
Note:

(1) Pressing the ESC button anytime during the steps above from (d) to (n) will abort the current
operation and nothing in the RTC will change. The message “Abort” will be displayed for a
second. The scrolling will resume with the old values in the RTC.

(2) Time and Date are set simultaneously to avoid data corruption of the RTC

Alarm Setting

Let’s set an alarm for 6:10AM.

(a) Press the ALARM button.
(b) Display indicates “Set Alarm?”

(eeye © 2015)

Please don’t use this hardware design and accompanying software for commercial purposes.
You can use this design and software for your own private use. 

(c) Press the ENTER key. (The ENTER button confirms that you are entering the SET ALARM
function).

(d) Use the DN key until the display shows AM. (The UP/DN keys have no effect if the clock is
running in the 24 hour mode. The display will show 24)

(e) Press the SET key.
(f) The display shows “H->01”.
(g) Use the UP key until the display shows “H->06”
(h) Press the SET key
(i) The display shows “M->01”
(j) Use the UP key until the display shows “M->10”
(k) Press the SET key.
(l) The message “Saved” will be displayed for one second and the alarm is set.

Note:

(1) Pressing the ESC button anytime during the steps above from (d) to (j) will abort the current
operation and nothing will change. The message “Abort” will be displayed for a second. The
scrolling will resume.

(2) If the operation mode of the clock is changed from AM/PM to 24 hour, then the alarm time
needs to be set again. This is because the alarm setting is based on the clock mode.

Checking Alarm Set Time

To check the time for which the alarm is set. Press the ENTER key while the clock is in normal
operation (scrolling / static). If the Alarm is Enabled in the preferences, then the display will show
“Alarm set for x:xx AM/PM”. If the Alarm is Disabled in the preferences, then the display will show
“Alarm Disabled”

Scrolling / Static Clock

Press the SCROLL key once to change the mode from scrolling to static and vice versa. In the static
mode the Clock and Temperature is alternately displayed, once every 5 seconds. A fade effect is
applied to the alternating clock and temperature. The amount of fade applied is based on the
ambient lighting or manual brightness. Hence if the clock is in a bright place, the fade is strong, if it is
in a dark place the fade is weak. Why? During the night, we want to quickly get to the time instead
of waiting for the fade to complete.

In the scroll mode the complete text “The time is x:xx on <Day>, <Date> <Month><Year>. The
ambient temperature is <xx.x>ᴼC.” is displayed.

Static mode is automatically activated from 8:00PM until 6:00AM. However should you wish to
override the same, press the scroll button to resume scrolling.

(eeye © 2015)

Please don’t use this hardware design and accompanying software for commercial purposes.
You can use this design and software for your own private use. 

Preferences

There are various preferences the user can set. The preferences are described below.

(a) To access the preferences, press the PREFS button.
(b) The display will show “Prefs” and then it will display
(c) “Al->speaker symbol X”, which means Alarm is Disabled. Press UP button to change to enabled.

Display will indicate “Al->speaker symbol with waves”. To disable press DN button.
(d) Press SET.
(e) The display will show “Ch: Bell X”, which means Hourly Chime disabled. Press UP button to

change to enabled. Display will indicate “Ch: waves Bell waves”. To disable press DN button.
(f) Press SET.
(g) The display will show “Br: Bulb symbol”, which means Automatic Brightness control enabled.

Press DN button to change to manual mode. The display will show “Br: up/down arrows”. Press
UP again to change to automatic mode. Display should show “Br: Bulb Symbol”.

(h) Press SET.
(i) The display will show “Sr: 30”. (Sr => Scroll Rate). The scroll rate can be set from 10 to 50 which

correspond to 20ms to 100ms. Therefore the lower the number set, the faster is the scrolling
and vice-versa. The default value is 30 which correspond to 60ms. Experiment with the various
values to determine the best scrolling rate to your preference.

(j) Press SET.
(k) The display will show “D: 0”. (D => Deviation in RTC clock). The value here can be set from -59 to

59. The values set here correspond to the number of seconds the clock is gaining or losing.
Negative values indicate that the clock is going fast and positive values indicate clock is going
slow. For example if the clock is losing 10 seconds per day. Then you have to set here half the
value, which in this case happens to be 5. If the clock is running fast for example if it is gaining
10 seconds per day, then you set here -5. (The clock is adjusted twice in the day automatically
using this value. So after you build the clock observe it for a week. Find out the number of
seconds the clock is gaining or losing per day. In this setting, enter half the value of the observed
deviation.)

(l) Press SET. The display will indicate “Saved”. The preferences are saved into the NV RAM.
Note:

(a) The user preferences are restored from the battery backed RTC NV RAM.
(b) Pressing the ESC button anytime during the steps above from (c) to (k) will abort the

current operation and nothing will change. The message “Abort” will be displayed for a
second. The scrolling/static display will resume.

Special functions

(a) If Manual brightness adjustment is selected in preferences. Then on pressing the UP/DN buttons
during the normal clock operation (scrolling / static), the brightness can be increased or
decreased. The manually selected brightness is retained and does not change with the ambient
light.

(eeye © 2015)

Please don’t use this hardware design and accompanying software for commercial purposes.
You can use this design and software for your own private use. 

(b) If Alarm is disabled in the preferences, then on pressing the ENTER key during normal clock
operation the message “Alarm Disabled” is shown. To enable alarm go back to preferences and
enable Alarm.

Assembling and Testing
Now that you have assembled the clock, it is time to test it before it is put to use.

(a) Solder and wire up all the components as per the schematic. Do not insert any IC’s into the
sockets.

(b) Do not connect the battery for the RTC backup.
(c) Apply 9V DC to the connector P1. Make the following measurements with respect to GND.
(d) Check the output of VR1 (Voltage Regulator). You should get +5V.
(e) Check the voltage at the VCC pins of the various IC’s. The voltage should be +5V
(f) Check the voltage at the pins of the switches. The voltage should be +5V.
(g) Remove the power, and insert all the chips except the microcontroller. Insert the chips with the

proper polarity (i.e., pin 1 should go into pin 1 of the socket).
(h) Turn on the power again. The display should be blank. Check the voltages at the VCC pins of the

IC’s. They should be +5V.
(i) Remove the power and insert the programmed microcontroller into its socket.
(j) Apply power again.
(k) If everything is done correctly, the clock will spring to life. Follow the steps previously and you

can set up the clock.

Troubleshooting

In the unfortunate event that the clock does not spring to life, follow the steps below.
a. Unplug the clock from the power. Using a multimeter check if all the IC’s have the GND

and +5V connection hooked up properly.
b. Check that Pin 1 of the microcontroller is connected to +5V using a 1K resistor (R3). This

pin is the reset and leaving it floating will cause the microcontroller to be in reset state.
c. Check if the dot matrix displays are not accidentally connected upside down. Use a

multimeter to check that the cathode of the displays is connected to the 82 ohm
resistors (R15 to R44).

d. If the problem exists in the above steps and it is fixed the clock will spring to life. If not
go to the next step.

e. Power on the clock.
f. Using an oscilloscope or frequency counter measure the frequency on pin 13 and 14 of

the microcontroller. The frequency will be in between 19 kHz to 20 kHz (PWM and SPI
clock).

g. Measure the frequency on pin 21 of the microcontroller. The frequency will be 70Hz
(row refresh clock).

h. If these frequencies are obtained then the microcontroller is functioning. Otherwise try
reprogramming the microcontroller and ensure that the fuses contained in the HEX file

(eeye © 2015)

Please don’t use this hardware design and accompanying software for commercial purposes.
You can use this design and software for your own private use. 

are also programmed. If the fuses are not programmed correctly, the watchdog
monitoring will keep resetting the microcontroller.

i. If the frequencies specified in steps (f, g) are being obtained and still the clock does not
spring to life.

j. It is possible that the communication to the RTC is not happening which is causing the
processor to go into endless loop. Hold the ENTER key while power on the clock.

k. Check the output of the RTC pin 7 of U4. If the communication is successful and the
crystal (Y2) is oscillating, a 1Hz output will be available on this pin. (Use an LED with a
resistor and connect it to +5V and pin 7. The cathode of the LED should be connected to
pin 7. The LED will be blinking at 1 Hz rate).

l. Fix the problem at the RTC if the 1Hz is not available.
m. Once done the clock should spring to life.

Happy holidays and have fun. I hope you enjoy constructing and using this clock as much as I have
enjoyed engineering it.

