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Section I. Yee grid and finite differences 
 

 

 
 

1. Yee grid 

A cubic Yee unit cell (uniform cell size  in all directions) is shown in Fig. 1. It has the 

following features [1]: 

 

1. The electric field is defined at the edge centers of a cube; 

2. The magnetic field is defined at the face centers of a cube; 

3. The electric permittivity/conductivity is defined at the cube center(s); 

4. The magnetic permeability/magnetic loss is defined at the cube nodes (corners). 
 

 

 
Fig. 1. Yee unit cell. 
 

Therefore, four interleaving indexing systems (i,j,k) in space may be introduced and used 

simultaneously:  

 

i. the system based on  cube edge centers (for the electric field); 

ii. the system based on cube  face centers (for the magnetic field); 

iii. the system based on cube centers (for electric permittivity/conductivity 

values); 

1. Yee grid  

2. Maxwell’s equations in three dimensions 

3.  Maxwell’s equations on Yee grid  

4.  Exponential time-stepping 

5.  MATLAB implementation of the Yee method  

6.         References 
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iv. the system based on cube nodes (for magnetic permeability/magnetic loss 

values); 

The interleaving feature of those systems is mathematically described by half-integer 

indexes. For example, when the indexing system for the magnetic field is used, the nodal 

magnetic field 
kjiyH

,,
 is located exactly halfway between electric field nodes 

kjizE
,,2/1

 

and 
kjizE

,,2/1
 in Fig. 1. Similarly, when the indexing system for the electric field is used, 

the nodal electric field 
kjizE

,,
 is located exactly halfway between magnetic field nodes 

kjiyH
,,2/1

 and 
kjiyH

,,2/1
 in Fig. 1, except for the boundary nodes.  

 

2. Maxwell’s equations in three dimensions  

2.1. Lossless space with no sources 

Consider an arbitrary (inhomogeneous) medium with electric permittivity  having the 

units of F/m and with magnetic permeability   having the units of H/m. In free lossless 

space (space without sources), Maxwell’s equations for the electric field (or the electric 

field intensity)  E


 [V/m] and for the magnetic field (or the magnetic field intensity) H


 

[A/m] in time domain have the form   

 

Maxwell’s H


  equation      H
t

E 






                   (1a) 

Faraday’s law        E
t

H 






       (1b) 

 

Gauss’ law for electric field (no electric charges)  0 E


        (1c) 

 

Gauss’ law for magnetic field (no magnetic charges) 0 H


        (1d) 

 

2.2. Driving sources and lossy space 

The driving sources for the electromagnetic fields are given by (generally volumetric) 

electric current density sJ


 of free charges with the units of A/m
2
, and by volumetric free 

charge density s   with the units of C/m
3
. The free charges are free electrons in a metal 

or free electrons and/or holes in a semiconductor. Instead of volumetric currents one may 

consider surface currents (a blade metal dipole) or line current (an infinitesimally thin 

cylindrical dipole/wire).  

 

The driving sources may be also given by a (volumetric) magnetic current density msJ


 

with the units of V/m
2 

and by volumetric magnetic charge density ms . The magnetic 

current density may be associated with an external impressed voltage. However, no 

magnetic charge has been found to exist in nature. Still, in practice it is often convenient 

to use the concept of magnetic currents (and fictitious magnetic charges).  
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The electric conduction current is always present in a lossy medium in the form EJ


  

where   is the electric conductivity with the units of S/m. So does an equivalent 

magnetic conduction current describing the magnetic loss mechanism, HJ m


  where 

  is the equivalent magnetic resistivity with the units of /m.  

 

In a lossy space with driving sources, Maxwell’s equations for the electric field (or the 

electric field intensity)  E


 [V/m] and for the magnetic field (or the magnetic field 

intensity) H


 [A/m] in time domain have the form   

Ampere’s law modified by displacement currents SJJH
t

E 






       (2a) 

Faraday’s law       msm JJE
t

H 






       (2b) 

 

Gauss’ law for electric field     sE  


       (2c) 

 

Gauss’ law for magnetic field (no magnetic charges) msH  


       (2d) 

 

Continuity equation for the impressed electric current         0



s

s J
t


      (2e) 

Continuity equation for the impressed magnetic current         0



ms

ms J
t


      (2e) 

 

A comprehensive theory of engineering electromagnetics may be found elsewhere [2],[3]. 

 

2.3. Divergence-free fields 

It is critical for FDTD to have the divergence-free electric and magnetic fields, with the 

distributed electric and magnetic charges being equal to zero, even for the point sources. 

This may be achieved using the loops of currents:  

 

(i) the closed loop of electric current to model the magnetic dipole (a small coil or 

loop antenna) and;  

(ii) the closed loop of magnetic current to model the electric dipole (a small current 

element). The loops of current (electric or magnetic) do not possess the (net) 

charge. Other methods include dumping charges into lumped resistors, etc.  

 

3. Maxwell’s equations on Yee grid 

3.1. Half-grid formulation 

Applying the central differences to all derivatives in Eqs. (1) and denoting the temporal 

grid by a  superscript n, one arrives at the following finite-difference update equations 

[4]: 
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Determine magnetic field at half temporal grid using the past values of the magnetic and 

electric fields: 

 

 n

kjiz

n

kjiz

n

kjiy

n

kjiykjix

n

kjixkjix

n

kjix EEEEHHHH
,2/1,,2/1,2/1,,2/1,,,,2

2/1

,,,,1

2/1

,, 


   (3a) 

 

 n

kjix

n

kjix

n

kjiz

n

kjizkjiy

n

kjiykjiy

n

kjiy EEEEHHHH
2/1,,2/1,,,,2/1,,2/1,,2

2/1

,,,,1

2/1

,, 



  (3b) 

 

 

 n

kjiy

n

kjiy

n

kjix

n

kjixkjiz

n

kjizkjiz

n

kjiz EEEEHHHH
,,2/1,,2/1,2/1,,2/1,,,2

2/1

,,,,1

2/1

,, 


       (3c) 

 

Determine electric field at integer temporal grid using the past values of the magnetic and 

electric fields: 

 

 2/1

2/1,,

2/1

2/1,,

2/1

,2/1,

2/1

,2/1,,,2,,,,1

1

,,




















n

kjiy

n

kjiy

n

kjiz

n

kjizkjix

n

kjixkjix

n

kjix HHHHEEEE      (3d) 

 

 2/1

,,2/1

2/1

,,2/1

2/1

2/1,,

2/1

2/1,,,,2,,,,1

1

,,




















n

kjiz

n

kjiz

n

kjix

n

kjixkjiy

n

kjiykjiy

n

kjiy HHHHEEEE     (3e) 

 

 2/1

,2/1,

2/1

,2/1,

2/1

,,2/1

2/1

,,2/1,,2,,,,1

1

,,




















n

kjix

n

kjix

n

kjiy

n

kjiykjiz

n

kjizkjiz

n

kjiz HHHHEEEE      (3f) 

 

The sources may then be added as described by Eqs. (2). The electric-field updating 

coefficients are defined by material properties in the form 

 

)2/(1

)/(
,

)2/(1

)2/(1

,,,,

,,

,,2

,,,,

,,,,

,,1

kjikji

kji

kjix

kjikji

kjikji

kjix
t

t
E

t

t
E

















              (3g) 

 

The same equation applies to 21, yy EE  and to 
21, zz EE , respectively, but the material 

properties at the observation node i,j,k  may be different.  
 

The magnetic-field updating coefficients are defined by material properties in the similar 

form 

)2/(1

)/(
,

)2/(1

)2/(1

,,,,

,,

,,2

,,,,

,,,,

,,1

kjikji

kji

kjix

kjikji

kjikji

kjix
t

t
H

t

t
H

















              (3h) 

 

The same equation applies to 21, yy HH  and to 
21, zz HH , but the material properties at the 

observation node i,j,k may be different.  
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3.2. Numerical (integer spatial indexes) formulation 

It is indeed convenient to use global integer indexes for programming purposes. The 

corresponding numbering scheme is shown in Fig. 2. Here, kjiG ,,  denotes the reference 

cube node. 

 
 

Fig. 2. A numbering scheme suitable for programming. 

 

Eqs. (3) may be rewritten in terms of integer indexes. In short, ±½ is replaced by 1 or 0 in 

the magnetic field update equations, and  ±½ is replaced by 0 or -1 in the electric field 

update equations, respectively. With reference to Fig. 2 one has  

 

 n

kjiz

n

kjiz

n

kjiy

n

kjiykjix

n

kjixkjix

n

kjix EEEEHHHH
,1,,,,,1,,,,2

2/1

,,,,1

2/1

,, 


       (4a) 

 

 n

kjix

n

kjix

n

kjiz

n

kjizkjiy

n

kjiykjiy

n

kjiy EEEEHHHH
1,,,,,,,,1,,2

2/1

,,,,1

2/1

,, 



       (4b) 

 

 n

kjiy

n

kjiy

n

kjix

n

kjixkjiz

n

kjizkjiz

n

kjiz EEEEHHHH
,,1,,,,,1,,,2

2/1

,,,,1

2/1

,, 


       (4c) 

 

Determine electric field at integer temporal grid using the past values of the magnetic and 

electric fields: 

 

 2/1

,,

2/1

1,,

2/1

,1,

2/1

,,,,2,,,,1

1

,,












n

kjiy

n

kjiy

n

kjiz

n

kjizkjix

n

kjixkjix

n

kjix HHHHEEEE       (4d) 

 

 2/1

,,

2/1

,,1

2/1

1,,

2/1

,,,,2,,,,1

1

,,












n

kjiz

n

kjiz

n

kjix

n

kjixkjiy

n

kjiykjiy

n

kjiy HHHHEEEE       (4e) 
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 2/1

,,

2/1

,1,

2/1

,,1

2/1

,,,,2,,,,1

1

,,












n

kjix

n

kjix

n

kjiy

n

kjiykjiz

n

kjizkjiz

n

kjiz HHHHEEEE       (4f) 

 

The electric-field updating coefficients are defined by material properties in the same 

form as before 

 

)2/(1

)/(
,

)2/(1

)2/(1

,,,,

,,

,,2

,,,,

,,,,

,,1

kjikji

kji

kjix

kjikji

kjikji

kjix
t

t
E

t

t
E

















              (4g) 

 

The same equation applies to 21, yy EE  and to 
21, zz EE , respectively, but the material 

properties at the observation node i,j,k may be different.  
 

The magnetic-field updating coefficients are defined by material properties in the same 

form as before 

 

)2/(1

)/(
,

)2/(1

)2/(1

,,,,

,,

,,2

,,,,

,,,,

,,1

kjikji

kji

kjix

kjikji

kjikji

kjix
t

t
H

t

t
H

















              (4h) 

 

The same equation applies to 21, yy HH  and to 
21, zz HH , but the material properties at the 

observation node  i,j,k  may be different.  
 

4. Exponential time stepping 

For a medium with high loss the update coefficients in Eqs. (4g), (4h) may become 

negative. This leads to a numerical instability. A solution to this problem is to “pre-solve” 

Maxwell’s curl equations, by first finding the solution of homogeneous equations, say  
  

)/exp()( 0

homhom  tEtEE
t

E




 


           (5a) 

 

and then obtain the solution of the full equations in the form of a convolution integral. 

This results in the following formulas for the update coefficients, valid for both 

homogeneous and inhomogeneous materials [6]    

 

 

  
kjikji

kjikji

kji

kjix

kjikji

kjikji

kjikji

kjix

t
t

t
E

t
t

t
E

,,,,

,,,,

,,

,,2

,,,,

,,,,

,,,,

,,1

/exp1
1

)2/(1

)/(

/exp
)2/(1

)2/(1


























             (5b) 

 

The same equation applies to 21, yy EE  and to 
21, zz EE , respectively, but the material 

properties at the observation node i,j,k may be different. Eqs. (5b) are equivalent to 

Taylor series to the first or second order of accuracy.   



MATLAB® FDTD Fields Solver v.2-0 2011  Neva EM 

8 

 

The magnetic-field updating coefficients are modified accordingly 
 

 

  
kjikji

kjikji

kji

kjix

kjikji

kjikji

kjikji

kjix

t
t

t
H

t
t

t
H

,,,,

,,,,

,,

,,2

,,,,

,,,,

,,,,

,,1

/exp1
1

)2/(1

)/(

/exp
)2/(1

)2/(1


























             (5c) 

 

The same equation applies to 21, yy HH  and to 
21, zz HH , but the material properties at the 

observation node  i,j,k  may be different. Eqs. (5b) are again equivalent to Taylor series to 

the first or second order of accuracy.  

 

The implementation of the exponential time stepping requires care, due to the singularity 

of the second Eq. (5b) when 0 . A vanishingly small conductivity value for air, that 

is   S/m10 6 , was  assumed to make second Eq. (5b) uniformly valid.  

 

The exponential time stepping may be applied to problems involving highly-conductive 

dielectrics – human body, salt water, Earth ground – at low and intermediate frequencies. 

It can be also applied to the direct modeling of metal objects by imposing a very high 

conductivity in the object volume.    
 

5. MATLAB implementation of the Yee method 

The MATLAB implementation of Eqs. (4) is surprisingly simple. One version utilizing 

the function diff is given here [5]. We assume that the FDTD cubic grid has 

zyx NNN   cube cells and )1()1()1(  zyx NNN  corner nodes. The dimensions 

of field arrays are given by  
 
% Allocate field matrices 

Ex = zeros(Nx  , Ny+1, Nz+1); 

Ey = zeros(Nx+1, Ny  , Nz+1); 

Ez = zeros(Nx+1, Ny+1, Nz  ); 

Hx = zeros(Nx+1, Ny  , Nz  ); 

Hy = zeros(Nx  , Ny+1, Nz  ); 

Hz = zeros(Nx  , Ny  , Nz+1); 

 

For the electric field, the update equations have the form 
 
%%  E-field update (everywhere except on the boundary 

ExN(:,2:Ny,2:Nz) = Ex1.*ExP(:,2:Ny,2:Nz)+Ex2.*(diff(HzP(:,:,2:Nz),1,2)-diff(HyP(:,2:Ny,:),1,3)); 

EyN(2:Nx,:,2:Nz) = Ey1.*EyP(2:Nx,:,2:Nz)+Ey2.*(diff(HxP(2:Nx,:,:),1,3)-diff(HzP(:,:,2:Nz),1,1)); 

EzN(2:Nx,2:Ny,:) = Ez1.*EzP(2:Nx,2:Ny,:)+Ez2.*(diff(HyP(:,2:Ny,:),1,1)-diff(HxP(2:Nx,:,:),1,2)); 

 

For the magnetic field, one similarly has  
 
%%  H-field update (everywhere) 
HxN =  Hx1.*HxP + Hx2.*(diff(EyN,1,3)- diff(EzN,1,2));    

HyN =  Hy1.*HyP + Hy2.*(diff(EzN,1,1)- diff(ExN,1,3));       

HzN =  Hz1.*HzP + Hz2.*(diff(ExN,1,2)- diff(EyN,1,1));  

 

No other update equations except the boundary become necessary. 
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Section II. Material properties 
 

 

 
 

1. Material properties 

In the standard FDTD formulation, every elementary Yee cell (electric-field components 

along a cube edges) is filled by a homogeneous medium. Dielectric boundaries can be 

only located between adjacent cells, therefore, they are tangential to the electric field 

components – see Fig. 3. Simultaneously, magnetic boundaries can be only located 

halfway between adjacent cells, therefore they are also tangential to the magnetic field 

components. Fig. 3 shows the corresponding concept.  

 

 
 
Fig. 3. Standard field nodes and material parameter nodes. The permittivity/conductivity is 

defined at cell centers. The permeability/magnetic loss is defined at cell corners.   

 

Effective constitutive parameters are derived by enforcing the continuity of the tangential 

electric- and magnetic field components in the integral formulation of the Ampere’s law 

and Faraday’s law [1]. These parameters are obtained by averaging the parameters of the 

neighboring cells with respect to the discontinuity. Such formulation is first-order 

accurate in cell size and leads to the definition of an effective permittivity and 

permeability. The result has the form[1],[2]: 

1. Material properties  

2. MATLAB implementation 

3.         References 
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- kjikji ,,,, ,  in Eqs. (4a) are obtained by averaging four adjacent center-cell values 

–see Fig. 2c;  

- kjikji ,,,, ,  in Eqs. (4b) are obtained by averaging four adjacent node values. 

 

2. MATLAB implementation 

We assume again that the FDTD cubic grid has zyx NNN   cube cells and 

)1()1()1(  zyx NNN  corner nodes. Then, the dielectric properties are described 

by 3D permittivity and conductivity arrays initialized in the form 

 
DIELC    = ones(Nx, Ny, Nz);  %3D Permittivity array  on half grid (cube centers) 

SIGEC    = zeros(Nx, Ny, Nz); %3D Electric conductivity array on half grid (cube centers) 

 

Once those arrays have been filled, the electric-field updating coefficients from Eq. (4a) 

are defined by material properties in the form (the result is only given for 
21, zz EE , other 

coefficient are obtained by permutation) 

 
%   Arrays for Ez  
nx = 2:Nx; ny = 2:Ny; nz =2:Nz; 

Dtemp = (DIELC(nx,ny,:)+DIELC(nx-1,ny,:)+DIELC(nx,ny-1,:)+DIELC(nx-1,ny-1,:))/4;  

Stemp = (SIGEC(nx,ny,:)+SIGEC(nx-1,ny,:)+SIGEC(nx,ny-1,:)+SIGEC(nx-1,ny-1,:))/4;  

 

    Ez1     = (1 - dt*Stemp./(2*Dtemp))./(1 + dt*Stemp./(2*Dtemp)); 

    Ez2     = (dt./(d*Dtemp))./(1 + dt*Stemp./(2*Dtemp)); 

    Ez1     = Ez1(:, :, nz); 

    Ez2     = Ez2(:, :, nz); 

 

The exponential time-stepping considered in the previous section requires the somewhat 

different update: 

 
    Stemp   = Stemp + 1e-9; 

    Ez1     = exp(-dt*Stemp./Dtemp);     

    Ez2     = (1 - exp(-dt*Stemp./Dtemp))./(d*Stemp);    

    Ez1     = Ez1(:, :, nz); 

    Ez2     = Ez2(:, :, nz); 

 

Similarly, for the magnetic field one initializes 3D permeability and resistivity arrays 

with the dimensions given by 

 
MAGNC  = ones(Nx+1, Ny+1, Nz+1); %3D Permeability array on integer grid (cube nodes) 

RHOMC  = zeros(Nx+1,Ny+1, Nz+1); %3D Magnetic res. array on integer grid (cube nodes) 

 

The magnetic-field updating coefficients from Eq. (4b) have the form (the result is only 

given for 21, xx HH , other coefficient are obtained by permutation) 

 
ny = 1:Ny; nz = 1:Nz;  

Mtemp = (MAGNC(:,ny,nz)+MAGNC(:,ny+1,nz)+MAGNC(:,ny,nz+1)+MAGNC(:,ny+1,nz+1))/4;  

Rtemp = (RHOMC(:,ny,nz)+RHOMC(:,ny+1,nz)+RHOMC(:,ny,nz+1)+RHOMC(:,ny+1,nz+1))/4;  

 

    Hx1  = (1 - dt*Rtemp./(2*Mtemp))./(1 + dt*Rtemp./(2*Mtemp)); 

    Hx2  = (dt./(d*Mtemp))./(1 + dt*Rtemp./(2*Mtemp)); 
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The exponential time-stepping considered in the previous section requires the somewhat 

different update: 

 
    Rtemp   = Rtemp + 1e-9; 

    Hx1     = exp(-dt*Rtemp./Mtemp);     

    Hx2     = (1 - exp(-dt*Rtemp./Mtemp))./(d*Rtemp + eps);    

 

More accurate (subcell) models of fine dielectric and magnetic boundaries crossing the 

unit cells are possible at the expense of increased complexity [3]. 

 

3. References 

 

[1]. G. Marrocco, M. Sabbadini, and F. Bardati, “FDTD Improvement by Dielectric 

Subgrid Resolution,” IEEE Trans. Microwave Theory Techniques,  vol. 46, no. 

12, Dec. 1998, pp. 2166-2169. 

 

[2]. K. S. Kunz and R. Luebbers, The Finite Difference Time Domain Method, Boca 

Raton, FL: CRC Press, 1993. 

 

[3]. A. Taflove, Computational Electrodynamics, The Finite Difference Time Domain 

Approach, Third Ed., Artech House, Norwood, MA, 2005, Chapter 10. 
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Section III. Model of a small dipole antenna (electric 

dipole) 
 

 

 
 

1. Standard small dipole model  

A small dipole antenna is represented by a uniform line current, )(tis , which flows over a 

length l. The length l is usually much smaller than the cell size. The current is centered at 

the corresponding electric field node as shown in Fig. 5 (see, for example, [1]).  

 

 
 

Fig. 5. Dipole antenna with the impressed line current )(tis . 

 

The line current is transformed to an equivalent volumetric current density averaged over 

one unit cell:   

 

)()(
3

ti
l

tJ ss


                                                                (1) 

 

which produces the same electric dipole moment. This current density is substituted in one 

of the FDTD update equations for the electric field (Eqs. (4d) to (4f)). For the dipole shown 

in Fig. 5, the result has the form  

1. Standard small dipole model  

2.         Small dipole model for arbitrary orientation  

3.         Pulse form to be used 

4.         MATLAB implementation 

5.         References 
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An important observation is that it is very straightforward to implement Eqs. (2) in 

practice. Namely, only current excitation terms have to be added after the standard update 

equations for the electric field. 

 

2.  Small dipole model for arbitrary orientation   

For an arbitrarily oriented dipole, with the unit direction vector n


, one could consider a 

superposition solution in the form of three orthogonal elementary dipoles oriented along 

the x-, y-, and z-axes. However, their phase centers will not be coincident – see Fig. 5 for 

an illustration. A modification of the model can be made that is shown in Fig. 6. Here, the 

dipole source is effectively placed at the corner node of the Yee cell. Two adjacent 

electric field nodes acquire the half of the dipole current.  

 

 
 

Fig. 6. Dipole antenna model with the dipole placed at the center node of the Yee cell.  

 

The dipole of arbitrary orientation with the unit direction vector n


  is then considered as 

a superposition of three dipoles directed along the x-, y-, and z-axes.  All those dipoles 

have the same (phase) center. The corresponding current densities are given by   
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The above model may be treated as a symmetric point source model.  

 

The port update given Eq. (2) is straightforwardly modified to the present case: it remains 

the same for the node kji ,,  (except that the current is divided by two), and uses index 

substitution 1 jj  for the second node in Fig. 6.   

 

Complete update equations for a dipole of arbitrary orientation have the form  
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Here, only current excitation terms have to be added after the standard update equations 

for the electric field.  

 

The model described above was implemented in the code.  It is advantage is the ability to 

describe the coil of arbitrary orientation, whilst keeping the same phase center. Its 

disadvantage is a “large” volume occupied by the coil model that extends to two unit 

cells in every direction.  

 

3. Pulse form to be used 

In general, the pulse form may be chosen arbitrarily. A (default) bipolar Gaussian 

(Rayleigh) current pulse used in the examples has the form  
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Its center frequency and a 3dB-power bandwidth are given by  
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16.0
cf ,  cf15.1BW                                   (7) 

 

For example, 

 

GHz6.1MHz,800MHz,400;ns1.0,ns2.0,ns4.0  ccc fff     (8) 

 

4. MATLAB implementation  

The MATLAB implementation of the symmetric dipole model (and of the related field 

probe) is given by the code that follows 
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%   setting up parameters 

Js   = PortM(m)/d^3*(IG(m, kt)+IG(m, kt+1))/2;% volum. current density at n+1/2  

i_e = PortIndX(m);   %   port location grid nodes 

j_e = PortIndY(m);   %   port location grid nodes 

k_e = PortIndZ(m);   %   port location grid nodes 

Jx = d*Js/2*PortNX(m); 

Jy = d*Js/2*PortNY(m); 

Jz = d*Js/2*PortNZ(m); 

  

ExN(i_e, j_e, k_e)   = ExN(i_e, j_e, k_e)   - Ex2(i_e, j_e-1, k_e-1)*Jx; 

ExN(i_e-1, j_e, k_e) = ExN(i_e-1, j_e, k_e) - Ex2(i_e-1, j_e-1, k_e-1)*Jx; 

  

EyN(i_e, j_e, k_e)   = EyN(i_e, j_e, k_e)   - Ey2(i_e-1, j_e, k_e-1)*Jy; 

EyN(i_e, j_e-1, k_e) = EyN(i_e, j_e-1, k_e) - Ey2(i_e-1, j_e-1, k_e-1)*Jy; 

  

EzN(i_e, j_e, k_e)   = EzN(i_e, j_e, k_e)   - Ez2(i_e-1, j_e-1, k_e)*Jz; 

EzN(i_e, j_e, k_e-1) = EzN(i_e, j_e, k_e-1) - Ez2(i_e-1, j_e-1, k_e-1)*Jz; 

  

AntI(m, kt) = IG(m, kt);  

  

AntE(m, kt) = PortNX(m)*(ExP(i_e, j_e, k_e) + ExP(i_e-1, j_e, k_e)) + ... 

              PortNY(m)*(EyP(i_e, j_e, k_e) + EyP(i_e, j_e-1, k_e)) + ... 

              PortNZ(m)*(EzP(i_e, j_e, k_e) + EzP(i_e, j_e, k_e-1)); 

AntE(m, kt) = AntE(m, kt)/2; 

                                                         %   at step n - tested 

                                                                         

AntH(m, kt) = PortNX(m)*(HxN(i_e, j_e, k_e) + HxN(i_e, j_e-1, k_e) + HxN(i_e, 

j_e, k_e-1) + HxN(i_e, j_e-1, k_e-1)) + ... 

              PortNY(m)*(HyN(i_e, j_e, k_e) + HyN(i_e-1, j_e, k_e) + HyN(i_e, 

j_e, k_e-1) + HyN(i_e-1, j_e, k_e-1)) + ... 

              PortNZ(m)*(HzN(i_e, j_e, k_e) + HzN(i_e-1, j_e, k_e) + HzN(i_e, 

j_e-1, k_e) + HzN(i_e-1, j_e-1, k_e)) + ... 

              PortNX(m)*(HxP(i_e, j_e, k_e) + HxP(i_e, j_e-1, k_e) + HxP(i_e, 

j_e, k_e-1) + HxP(i_e, j_e-1, k_e-1)) + ... 

              PortNY(m)*(HyP(i_e, j_e, k_e) + HyP(i_e-1, j_e, k_e) + HyP(i_e, 

j_e, k_e-1) + HyP(i_e-1, j_e, k_e-1)) + ... 

              PortNZ(m)*(HzP(i_e, j_e, k_e) + HzP(i_e-1, j_e, k_e) + HzP(i_e, 

j_e-1, k_e) + HzP(i_e-1, j_e-1, k_e)); 

AntH(m, kt) = AntH(m, kt)/8; 

 

The accuracy and limitations of the small symmetric-dipole model have been quantified 

by many examples using the comparison with analytical solutions for point sources [2] 

reformulated in time domain.   
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Section IV. Model of a small coil antenna (magnetic 

dipole) 
 

 

 
 

1. General facts about coil antennas 

Consider a coil antenna with the dimensions shown in Fig. 7. The antenna has N turns; 

the coil cross-section is A; the length is l. The antenna is oriented along the z-axis. The 

coil may have a finite magnetic core.   

 

 
 

Fig.7. A coil antenna (with or without) the magnetic core.    

 

The antenna is excited by a current pulse )(ti . If necessary, the voltage across the coil 

antenna may be calculated by [1] 

 

radstaticstatic,,)( RRRLLRi
dt

di
LtL                         (1) 

 

where two indexes relate to static values and their radiation corrections, respectively. One 

has for the static inductance of an air-core solenoid with radius r , cross-section area A, 

and length l,  
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The radiation resistance is given by [1] 
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The radiation resistance is negligibly small for very small coils. 

 

The calculation of inductance for the coil with a straight magnetic core becomes a 

nontrivial theoretical exercise. The graphical data is given in [1]. We also present here a 

useful theoretical result. It is only valid for a high-permeability magnetic core, with 

approximately 0100  . The resulting inductance for the inductor in Fig. 7 has the 

form [2] 
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where 
*l  is the core length and r is the coil radius. Interestingly, the resulting inductance 

does not explicitly depend on the specific value of   as long as this value is sufficiently 

large. More precisely, Eq. (4) holds only for situations where the core length-to-diameter 

ratio is considerably smaller than the relative magnetic permeability, 0/ r . Eq. (4) 

was compared with experiment and indicated about 40% accuracy in predicting the 

inductance.  
 

2. Receive coil 

2.1. Coil without magnetic core 

In the receiving mode, the open-circuited air-core RX coil shown in Fig. 7 generates the 

induced emf voltage,  
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where the emf polarity “+” corresponds to the dotted terminal of the coil shown in Fig. 7. 

Thus, the receive coil in the open-circuit mode does not significantly disturb the incident 

field and acts similar to a field probe. This concept will be implemented in the numerical 

code. Therefore, the small receive coil does not need a dedicated FDTD modeling.  

 

In terms of finite differences, one has  
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An alternative is to use Eq. (10) with zero sources, which yields 
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The Yee-grid discretization gives 
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2.2. Coil with arbitrary orientation  

In this case, Eq. (5) is modified to  
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where  n


 is the unit vector in the direction of the coil axis, directed toward the dotted 

terminal of the coil in Fig. 7.  Eqs. (5b) through (5c) may be modified accordingly.  

 
2.3. Coil with a magnetic core 

For the coil with the core, the situation complicates. Comparing Eq. (2) (with 0w  )  

and Eq. (4) one could in principle define the “effective” permeability within the coil, i.e. 

the permeability, which gives the same inductance, in the form,  
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Herewith, the induced emf voltage might be defined in the form 
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Eq. (8) was not tested by comparison with experiment and should be used with care.  
 

3. Transmit coil  - a magnetic dipole 

3.1 Magnetic dipole 

A small transmit coil antenna which carries the current )(ti  in Fig. 7 is modeled as an 

infinitesimally small magnetic dipole with a magnetic moment )(tM z
. For the coil 

without the magnetic core, 
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where A is the coil cross-section, N is the number of turns, and )(ti  is the instantaneous 

coil current. The meaning of the magnetic moment originates from the torque exerted on 

a loop of current in an external magnetic field. On the other hand, the magnetic moment 

is the only characteristic of a very small coil antenna that defines both its near- and far 

field [3],[4].  Generally, the magnetic moment is a vector quantity, with the unit direction 

vector n


.  The magnetic moment is directed along the coil axis according to the right-

hand rule for the electric current. For example, it is directed up in Fig. 7.  

 

3.2 Magnetic dipole model with a magnetic current source  

The simplest way to model the coil antenna is to introduce the magnetic current source 

density into Faraday’s law Eq. (2b) 
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Averaging over the volume of the FDTD unit cell yields  
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The Yee-grid discretization yields  
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This method has a number of disadvantages. One of them is that the magnetic current 

source given by Eqs. (12) and (13) does not work well on the boundary between vacuum 

and a magnetic material. Therefore, it is not implemented in the code.  

 

3.3 Magnetic dipole model with a loop of electric current 

The small coil antenna may be modeled with a loop of electric current – see Fig. 8. The 

coil antenna is placed at the node of the co-polar magnetic field as shown in Fig. 1.  This 

is not the sub-cell model of the coil, but rather the cell model.  

 

Such a location is convenient, but it does not allow us to consider an arbitrary coil 

antenna orientation in general. An arbitrarily-oriented radiating coil may be considered as 

a superposition of three coils oriented along the axes; however, these coils will not have 

the same phase center.  
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Fig. 8. Coil antenna modeled with a loop of an equivalent electric current.   

 

Following the approach from Ref. [4], the coil in Fig. 8 is replaced by a square loop of 

the grid-aligned current )(tis  which possesses the same magnetic moment: 
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where   is the cell size of the cubic grid. Further, the current )(tis  is replaced by its 

current density uniformly distributed over every involved cell’s cross-section, 
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Let’s assume the coil is located at the Hz-field node i,j,k – see Fig. 8. Maxwell’s 

equations in a lossy inhomogeneous medium for four surrounding E-field nodes  
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on the Yee grid are modified to 
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at the locations of the E-field nodes. Here,   is the electric conductivity.  

 

An important observation is that it is very straightforward to implement Eqs. (17) in 

practice. Namely, only current excitation terms have to be added after the standard update 

equations for the electric field. 

 

3.4 Magnetic dipole model with two loops of electric current and arbitrary coil 

orientation 

The current-loop model of Fig. 8 is straightforwardly modified for the case of arbitrary 

coil orientation. The concept is shown in Fig. 9 that follows. The coil antenna is now 

placed at the center of the Yee cell. The coil in Fig. 9 is replaced by two square loops of 

the grid-aligned electric current, which in sum possess the same magnetic moment. 

Instead of Eq. (15), the current density for each loop becomes  
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i.e. the half of the original current density. Update Eqs. (17) are straightforwardly 

modified to the present case: they remain the same for the lower face in Fig. 9 and use 

index substitution 1 kk  for the upper face.  

 

The coil of arbitrary orientation with the unit direction vector n


  is considered as a 

superposition of three coils directed along the x-, y-, and z-axes.  The corresponding 

current densities are given by   
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Fig. 9. Coil antenna model with the coil placed at the center node of the Yee cell.  
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All the current densities should follow the right-hand rule with regard to all three 

Cartesian axes as shown in Fig. 9 for the z-axis. 

 

The model described above was implemented in the code.  It is advantage is the ability to 

describe the coil of arbitrary orientation, whilst keeping the same phase center. Its 

disadvantage is a “large” volume occupied by the coil model that extends to two unit 

cells in every direction.  The above coil model may be treated as a symmetric point 

source model.  

 

4. Mutual inductance between transmit and receive coils  

Although not directly implemented in the code, the mutual inductance between transmit 

and receive coils as a function of frequency can be calculated after the FDTD run is 

finished. The result has the form  
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The self-inductance is found as described  in subsection 1. Note that the current is to be 

given on half temporal grid – see Eqs. (17) whereas the emf voltage is found on the 

integer temporal grid – see Eq. (5b).  Therefore, for example, one could interpolate the 

current for the integer temporal grid.  
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5. MATLAB implementation  
The MATLAB implementation of the symmetric coil model (and of the related field 

probe) is given by the code that follows 

 
%   FDTD MATLAB antenna/array solver 

%   Copyright SNM/GN 2011  

%   Electric-current coil antenna model (after E-field update) 

  

%   setting up parameters 

Js   = PortM(m)/d^4*(IG(m, kt)+IG(m, kt+1))/2;  %   volumetric current density 

at n+1/2 - tested     

i_e = PortIndX(m);   %   port location grid nodes 

j_e = PortIndY(m);   %   port location grid nodes 

k_e = PortIndZ(m);   %   port location grid nodes 

Jx = d*Js/2*PortNX(m); 

Jy = d*Js/2*PortNY(m); 

Jz = d*Js/2*PortNZ(m); 

  

%   coil/loop along the x-axis 

%   Update equations (simple addition - right-hand rule exactly) 

EzN(i_e, j_e, k_e)   = EzN(i_e, j_e, k_e)   + Ez2(i_e-1, j_e-1, k_e)*Jx; 

EzN(i_e, j_e+1, k_e) = EzN(i_e, j_e+1, k_e) - Ez2(i_e-1, j_e, k_e)*Jx; 

EyN(i_e, j_e, k_e)   = EyN(i_e, j_e, k_e)   - Ey2(i_e-1, j_e, k_e-1)*Jx; 

EyN(i_e, j_e, k_e+1) = EyN(i_e, j_e, k_e+1) + Ey2(i_e-1, j_e, k_e)*Jx; 

  

EzN(i_e+1, j_e, k_e)   = EzN(i_e+1, j_e, k_e)   + Ez2(i_e, j_e-1, k_e)*Jx; 

EzN(i_e+1, j_e+1, k_e) = EzN(i_e+1, j_e+1, k_e) - Ez2(i_e, j_e, k_e)*Jx; 

EyN(i_e+1, j_e, k_e)   = EyN(i_e+1, j_e, k_e)   - Ey2(i_e, j_e, k_e-1)*Jx; 

EyN(i_e+1, j_e, k_e+1) = EyN(i_e+1, j_e, k_e+1) + Ey2(i_e, j_e, k_e)*Jx; 

%   step n 

AntEx        = 1/4*(ExP(i_e, j_e, k_e)+... 

                     ExP(i_e, j_e+1, k_e)+... 

                     ExP(i_e, j_e, k_e+1)+... 

                     ExP(i_e, j_e+1, k_e+1));                          

%   E-fields for all ports -step n     

AntHx  =    0.5*(HxN(i_e, j_e, k_e) + HxN(i_e+1, j_e, k_e));           

%   H-fields for all ports -step n+1/2  

  

%   coil/loop along the y-axis 

%   Update equations (simple addition - right-hand rule exactly) 

EzN(i_e, j_e, k_e)      = EzN(i_e, j_e, k_e)   - Ez2(i_e-1, j_e-1, k_e)*Jy; 

EzN(i_e+1, j_e, k_e)    = EzN(i_e+1, j_e, k_e) + Ez2(i_e, j_e-1, k_e)*Jy; 

ExN(i_e, j_e, k_e)      = ExN(i_e, j_e, k_e)   + Ex2(i_e, j_e-1, k_e-1)*Jy; 

ExN(i_e, j_e, k_e+1)    = ExN(i_e, j_e, k_e+1) - Ex2(i_e, j_e-1, k_e)*Jy;   

EzN(i_e, j_e+1, k_e)    = EzN(i_e, j_e+1, k_e)   - Ez2(i_e-1, j_e, k_e)*Jy; 

EzN(i_e+1, j_e+1, k_e)  = EzN(i_e+1, j_e+1, k_e) + Ez2(i_e, j_e, k_e)*Jy; 

ExN(i_e, j_e+1, k_e)    = ExN(i_e, j_e+1, k_e)   + Ex2(i_e, j_e, k_e-1)*Jy; 

ExN(i_e, j_e+1, k_e+1)  = ExN(i_e, j_e+1, k_e+1) - Ex2(i_e, j_e, k_e)*Jy; 

%   step n 

AntEy         = 1/4*(EyP(i_e, j_e, k_e)+... 

                     EyP(i_e+1, j_e, k_e)+... 

                     EyP(i_e, j_e, k_e+1)+... 

                     EyP(i_e+1, j_e, k_e+1));                         

%   E-fields for all ports -step n      

AntHy   =     0.5*(HyN(i_e, j_e, k_e) + HyN(i_e, j_e+1, k_e));        

%   H-fields for all ports -step n+1/2 

  

%   coil/loop along the z-axis 

%   Update equations (simple addition - right-hand rule exactly) 

ExN(i_e, j_e, k_e)      = ExN(i_e, j_e, k_e)   - Ex2(i_e, j_e-1, k_e-1)*Jz; 
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ExN(i_e, j_e+1, k_e)    = ExN(i_e, j_e+1, k_e) + Ex2(i_e, j_e, k_e-1)*Jz; 

EyN(i_e, j_e, k_e)      = EyN(i_e, j_e, k_e)   + Ey2(i_e-1, j_e, k_e-1)*Jz; 

EyN(i_e+1, j_e, k_e)    = EyN(i_e+1, j_e, k_e) - Ey2(i_e, j_e, k_e-1)*Jz; 

ExN(i_e, j_e, k_e+1)    = ExN(i_e, j_e, k_e+1)   - Ex2(i_e, j_e-1, k_e)*Jz; 

ExN(i_e, j_e+1, k_e+1)  = ExN(i_e, j_e+1, k_e+1) + Ex2(i_e, j_e, k_e)*Jz; 

EyN(i_e, j_e, k_e+1)    = EyN(i_e, j_e, k_e+1)   + Ey2(i_e-1, j_e, k_e)*Jz; 

EyN(i_e+1, j_e, k_e+1)  = EyN(i_e+1, j_e, k_e+1) - Ey2(i_e, j_e, k_e)*Jz; 

  

%   step n 

AntEz         = 1/4*(EzP(i_e, j_e, k_e)+... 

                     EzP(i_e+1, j_e, k_e)+... 

                     EzP(i_e, j_e+1, k_e)+... 

                     EzP(i_e+1, j_e+1, k_e));                            

%   E-fields for all ports -step n 

AntHz   =     0.5*(HzN(i_e, j_e, k_e)+HzN(i_e, j_e, k_e+1));             

%   H-fields for all ports -step n+1/2  

  

%   co-polar components 

AntE(m, kt) = PortNX(m)*AntEx + PortNY(m)*AntEy + PortNZ(m)*AntEz;       

%   at step n - tested 

TmpH(m, kt) = PortNX(m)*AntHx + PortNY(m)*AntHy + PortNZ(m)*AntHz;       

%   at step n+1/2 - tested 

AntH(m, kt) = (TmpH(m, kt) + TmpH(m, kt-1))/2;                           

%   at step n - tested 

AntI(m, kt) = IG(m, kt);                                                 

%   at step n - tested 

AntV(m, kt) = -mu0*PortM(m)*(TmpH(m, kt) - TmpH(m, kt-1))/dt;   

%   antenna voltages for all ports at step n 

 

The accuracy and limitations of the small symmetric-coil model have been quantified by 

many examples using the comparison with analytical solutions for point magnetic sources 

[3] reformulated in time domain.   
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Section V. Model of an impressed electric field or voltage 

source (loop of magnetic current) 
 

 

 
 

1. Concept of an impressed voltage (electric field)  source  

Considered two metal plates of area A separated by distance l in Fig. 10a with an applied 

voltage )(t  between the plates. Assume that the corresponding electric field (directed 

down in Fig. 10a),  

 

l

t
tEin

)(
)(


                             (1) 

 
Fig. 10a. Impressed voltage (electric field source). 
 

is uniform between the plates, which is true for small separation distances. Also assume 

that the electric field is zero otherwise (medium 2). The boundary condition for the 

electric field on the side boundary of the cylinder states that  
 

))(( 2 tEEmM in
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                                                                       (2) 

 

where M


 is the resulting surface magnetic current density (V/m)  on the side boundary, 

m


 is the outer normal.  With reference to Fig. 1, M


 has only an angular component, i.e. 
 

1.  Concept of an impressed voltage (electric field)  source    

2.         Modeling an impressed voltage source  

3.  Modeling an impressed voltage source of arbitrary orientation  

4.  Relation between the magnetic current loop source and the electric 

  dipole source  

5.         MATLAB implementation 
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Thus, the impressed electric field source (or the voltage source) is equivalent to the loop 

of a surface magnetic current.  The total magnetic current in the loop is lM , the loop 

area is A.  Therefore, the product )(tAAlM    has the sense of a loop moment where A 

is the moment per one volt.   

 

2. Modeling an impressed voltage source 

The initial FDTD implementation is shown in Fig. 10b.  The field source from Fig. 1 is 

placed at the node of the co-polar electric field as shown in Fig. 10b. Such a location is 

convenient, but it does not allow us to consider an arbitrary source orientation in general. 

We model the source with the closed loop of a magnetic current )(tims  passing through 

the nodes for the magnetic field shown in the figure.  This model is dual to the magnetic 

dipole. Since the loop moment should be preserved, it follows from Eq. (3a) that  
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Fig.10b. TX voltage source and the surrounding FDTD grid.  

 

Thus, the volumetric magnetic current density, 2/)()(  titJ msms ,  in Fig. 10b is 

specified. The update equations corresponding to Fig. 10b have the form  
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An important observation is that it is very straightforward to implement Eqs. (4) in 

practice. Namely, only current excitation terms have to be added after the standard update 

equations for the magnetic field. 

 

3. Modeling an impressed voltage source of arbitrary orientation  

The magnetic current-loop model of Fig. 10b is straightforwardly modified for the case of 

arbitrary source orientation. The concept is shown in Fig. 11 that follows. The source 

antenna is now placed at the corner of the Yee cell. The source in Fig. 11 is replaced by 

two square loops of the grid-aligned magnetic current, which in sum possess the same 

moment. This means that the current density for each loop becomes the half of the 

original magnetic current density.  

 

Update Eqs. (4) are straightforwardly modified to the present case: they remain the same 

for the upper face in Fig. 11 and employ the index substitution 1 jj  for the lower 

face.  

 

The source of arbitrary orientation with the unit direction vector n


  is considered as a 

superposition of three elementary sources directed along the x-, y-, and z-axes.  The 

corresponding current densities are given by   
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All the magnetic current densities should follow the right-hand rule with regard to all 

three Cartesian axes as shown in Fig. 11 for the y-axis. 

 

The model described above was implemented in the code.  It is advantage is the ability to 

describe the source of arbitrary orientation, whilst keeping the same phase center. Its 

disadvantage is a “large” volume occupied by the dipole model that extends to two unit 

cells in every direction.  
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Fig. 11. Impressed source model with the dipole placed at the corner node of the Yee cell.  

 

4. Relation between the magnetic current loop source and the electric dipole source  

The displacement current (current in the capacitor) in Fig. 10a is directed down. 

Therefore, the counterpart of the magnetic current loop in Fig. 10a, with the magnetic 

current running following the right-hand rule with regard to the positive z-direction, 

should be an infinitesimally small electric dipole oriented toward the negative z-direction. 

If this dipole has a length l and a uniform line current tIti ss cos)( 0 , its radiation in 

the far field is described by ([1], Ch. 4, p. 159): 
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On the other hand, the small magnetic current loop, whose right-hand rule axis is the z-

axis, and which has a uniform magnetic current tIti msms cos)( 0   and an area S, 

radiates in the far field in the following way: 
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Comparing Eqs.(6) and (7) one has  
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Eq. (8) can be transformed to the time-domain solution for an arbitrary pulse by operator 

substitution tcjk  1

0 .  This gives 
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Further, the magnetic current )(tims  is replaced by its current density uniformly 

distributed over every involved cell’s cross-section: 
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Finally, since the loop area is the cell face, one has 
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The above expression has the units of V/m
2
, indeed. The last step is to substitute into Eq. 

(11) the expression for )(tJms  that follows from Eq. (3b), that is 
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The result becomes  
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which is the familiar capacitor model introduced yet in the first figure to this section.  

 

5. MATLAB implementation  

The MATLAB implementation of the symmetric voltage source model is given by the 

code that follows 
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%   setting up parameters   

Jms   = PortM(m)/d^4*VG(m, kt+1);   

                      %   magnetic current/voltage at step n+1  

  

i_e = PortIndX(m);   %   port location grid nodes 

j_e = PortIndY(m);   %   port location grid nodes 

k_e = PortIndZ(m);   %   port location grid nodes 

Jx = d*Jms/2*PortNX(m); 

Jy = d*Jms/2*PortNY(m); 

Jz = d*Jms/2*PortNZ(m); 

  

%   Port parameters                                                         

AntV(m, kt) = VG(m, kt);   

  

%   impressed field along the x-axis 

HyN(i_e, j_e, k_e)   = HyN(i_e, j_e, k_e)   + Hy2(i_e, j_e, k_e)*Jx; 

HyN(i_e, j_e, k_e-1) = HyN(i_e, j_e, k_e-1) - Hy2(i_e, j_e, k_e-1)*Jx; 

HzN(i_e, j_e, k_e)   = HzN(i_e, j_e, k_e)   - Hz2(i_e, j_e, k_e)*Jx; 

HzN(i_e, j_e-1, k_e) = HzN(i_e, j_e-1, k_e) + Hz2(i_e, j_e-1, k_e)*Jx; 

  

HyN(i_e-1, j_e, k_e)   = HyN(i_e-1, j_e, k_e)   + Hy2(i_e-1, j_e, k_e)*Jx; 

HyN(i_e-1, j_e, k_e-1) = HyN(i_e-1, j_e, k_e-1) - Hy2(i_e-1, j_e, k_e-1)*Jx; 

HzN(i_e-1, j_e, k_e)   = HzN(i_e-1, j_e, k_e)   - Hz2(i_e-1, j_e, k_e)*Jx; 

HzN(i_e-1, j_e-1, k_e) = HzN(i_e-1, j_e-1, k_e) + Hz2(i_e-1, j_e-1, k_e)*Jx;        

  

%   impressed field along the y-axis  

HxN(i_e, j_e, k_e)   = HxN(i_e, j_e, k_e)   - Hx2(i_e, j_e, k_e)*Jy; 

HxN(i_e, j_e, k_e-1) = HxN(i_e, j_e, k_e-1) + Hx2(i_e, j_e, k_e-1)*Jy; 

HzN(i_e, j_e, k_e)   = HzN(i_e, j_e, k_e)   + Hz2(i_e, j_e, k_e)*Jy; 

HzN(i_e-1, j_e, k_e) = HzN(i_e-1, j_e, k_e) - Hz2(i_e-1, j_e, k_e)*Jy; 

  

HxN(i_e, j_e-1, k_e)   = HxN(i_e, j_e-1, k_e)   - Hx2(i_e, j_e-1, k_e)*Jy; 

HxN(i_e, j_e-1, k_e-1) = HxN(i_e, j_e-1, k_e-1) + Hx2(i_e, j_e-1, k_e-1)*Jy; 

HzN(i_e, j_e-1, k_e)   = HzN(i_e, j_e-1, k_e)   + Hz2(i_e, j_e-1, k_e)*Jy; 

HzN(i_e-1, j_e-1, k_e) = HzN(i_e-1, j_e-1, k_e) - Hz2(i_e-1, j_e-1, k_e)*Jy; 

  

%   impressed field along the z-axis 

HxN(i_e, j_e, k_e)     = HxN(i_e, j_e, k_e)   + Hx2(i_e, j_e, k_e)*Jz; 

HxN(i_e, j_e-1, k_e)   = HxN(i_e, j_e-1, k_e) - Hx2(i_e, j_e-1, k_e)*Jz;     

HyN(i_e, j_e, k_e)     = HyN(i_e, j_e, k_e)   - Hy2(i_e, j_e, k_e)*Jz; 

HyN(i_e-1, j_e, k_e)   = HyN(i_e-1, j_e, k_e) + Hy2(i_e-1, j_e, k_e)*Jz; 

  

HxN(i_e, j_e, k_e-1)     = HxN(i_e, j_e, k_e-1)   + Hx2(i_e, j_e, k_e-1)*Jz; 

HxN(i_e, j_e-1, k_e-1)   = HxN(i_e, j_e-1, k_e-1) - Hx2(i_e, j_e-1, k_e-1)*Jz;     

HyN(i_e, j_e, k_e-1)     = HyN(i_e, j_e, k_e-1)   - Hy2(i_e, j_e, k_e-1)*Jz; 

HyN(i_e-1, j_e, k_e-1)   = HyN(i_e-1, j_e, k_e-1) + Hy2(i_e-1, j_e, k_e-1)*Jz; 

 

The accuracy and limitations of the small symmetric voltage-source model have been 

quantified by many examples using the comparison with the analytical solutions for point 

sources [1].   

 

6. References 

 

[1]. C. A. Balanis, Antenna Theory. Analysis and Design, Third Ed., Wiley, New 

York, 2005. 



MATLAB® FDTD Fields Solver v.2-0 2011  Neva EM 

32 

 

Section VI. Boundary conditions  
 

 

 
 

1. Boundary conditions implemented in the code 

A wide variety of Absorbing Boundary Conditions (ABCs) exist.  A review of different 

ABCs is given in Ref.[1]; see also Ref.[2]. In this code, we will implement the first- and 

second-order ABCs due to Mur [3] augmented with Mei’s superabsorption [4].  

 

A simple yet reasonably accurate combination is that of the first-order Mur’s ABCs and 

superabsorption. This combination does not need a special treatment for edges and 

corners. It is trivially extended to the case of an inhomogeneous medium and still has a 

sufficient numerical accuracy (second-order) as confirmed by a number of computational 

examples.   

 

2. Mur’s ABCs 

Let's take a look at Fig. 12 that follows. First, if a source of excitation is located 

approximately in the center of the FDTD domain, and the size of this domain is large 

enough, the signal that hits the boundary is a combination of plane propagating waves.  
 

 
 

Fig. 12. An "almost" plane wave that is coming toward  the boundaries needs to be absorbed.   

1.  Boundary conditions implemented in the code   

2.         Mur’s ABCs 

3.  Implementation of the first-order ABCs  

4.  “Superabsorption” ABCs (Mei and Fang 1992)  

5.         MATLAB implementation in 3D 

6.         References 
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Such a field is conventionally described in terms of the so-called parabolic 

approximation, which initially was developed for well-collimated weakly-diffracted 

optical beams - almost plane waves.  Let us start with the wave equation for an arbitrary 

field quantity, W,   
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One can obtain another form of this equation, to underscore the dominant propagation 

along the x-axis  
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either in the positive or in the negative direction. We are interested in the boundary at 

x=0, i.e. in the negative direction of propagation. When the direction of propagation is 

exactly the negative x-axis and the wave is exactly plane, from Eq. (2) one obtains  
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While this observation is only approximately true, we could still replace one spatial 

derivative in the first term on the right-hand side of Eq. (2) by    
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This yields 
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or, which is the same,  
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Eq. (6) is the well-known parabolic approximation to the wave equation. It says that the 

electromagnetic signal propagates predominantly along the negative x-axis; it is also a 

subject to diffraction in the transversal plane (in the yz-plane). The parabolic equation is 

easier to solve than the wave equation itself, and it is straightforward to formulate the 

boundary conditions in terms of it. The first-order Mur’s ABCs utilize Eq. (3); the 

second-order Mur’s ABCs utilize Eq. (6).        
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First-order Mur's ABCs are given by Eq. (3) applied at all boundaries. In particular,   
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for the left and right boundary in Fig. 12, respectively. The results for the lower and 

upper boundaries are obtained by permutation (xy) . Despite this very simple nature, 

even those equations will do a decent job when implemented correctly. 

 

Note: The first-order Mur's ABCs are given for the E-field only. The H-field is not  

involved. The reason becomes clear if we examine the field array: 

 
% Allocate field matrices 

Ex = zeros(Nx  , Ny+1, Nz+1); 

Ey = zeros(Nx+1, Ny  , Nz+1); 

Ez = zeros(Nx+1, Ny+1, Nz  ); 

Hx = zeros(Nx+1, Ny  , Nz  ); 

Hy = zeros(Nx  , Ny+1, Nz  ); 

Hz = zeros(Nx  , Ny  , Nz+1); 
 

The component Hy, which might be a subject to the boundary conditions on the left/right 

boundary in Fig. 12 is simply not defined on those boundaries.   

 

3. Implementation of the first-order ABCs 

Let us proceed with the first-order Mur's ABCs Eqs. (7). The central point is how to 

implement them properly at the boundaries. We will use the central differences in both 

the space and the time increments, so that our result will have a local truncation error of 

the second order in all increments. One has 
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for the left boundary. Eq. (8a) is valid for any node on the boundary, including the edges 

and the corners. When the inhomogeneous material properties are involved, the local 

speed of light /1c  is assumed to be constant close to the boundary in the direction 

perpendicular to the boundary, on both its sides. The tangential changes are allowed at 
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any node of the boundary; they are included into consideration exactly as in the main 

FDTD grid. For the right boundary in Fig. 12, one similarly has 
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                (8b) 

The extensions to the lower and upper boundaries and to the 3D case are straightforward.  

 

4. “Superabsorption” ABCs (Mei and Fang 1992) 

The Mei-Fang “superabsorption” method [4] is not an ABC by itself, but rather a 

numerical procedure for the improvement of the local ABC's applied to the FDTD 

technique – see Ref. [5]. It embodies an error-canceling formulation according to which 

the same ABC is applied to both E anid H field components on and near the outer 

boundaries, depending on the polarization examined.   

 

Namely, the calculation of the 2-D TM (TE) magnetic (electric) components, from their 

respective boundary ABC-derived electric (magnetic) ones, yields reflection errors which 

are strongly related to the errors in magnetic (electric) field components directly 

computed from the ABC. The opposite sign that these errors have in both of the above 

separate calculations is a point of crucial importance in the superabsorption procedure. 

Taking this fact into consideration and by properly combining the two different 

computations of the magnetic (electric) fields near the boundary, it is possible to cancel 

the reflection errors mutually while maintaining the correct values of the fields on the 

boundary [5]. 

 

Fig. 13 illustrates schematically the implementation of the method for the right boundary 

( Lx  ) of the computational domain in Fig. 12.  For this boundary, we apply the first-

order Mur’s ABC given by Eq. (8b) not only to the Ez-field but also to the Hy-field in the 

vicinity to that boundary, i.e.  
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Next, we compute the Hy-field by the regular finite-difference scheme to obtain  
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Fig. 13. Superabsorption ABCs on the right boundary.  

 

After that, we form a weighted average of those two values and obtain the final updated 

magnetic field value a the last point by   
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Here,  
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It can be shown that this procedure significantly decreases the error of a local ABC, in 

particular, the first-order Mur’s ABC.  It is also very simply implemented and does not 

require any extra variables. When the inhomogeneous material properties are involved, 

the same  scheme is followed as for the first-order Mur’s ABCs.  

 

5. MATLAB implementation in 3D 

The MATLAB implementation of the ABCs is given by the code that follows (for a 

homogeneous medium) 

 

First-order Mur’s ABCs (after electric field update): 

 
m1      = (c0*dt - d)/(c0*dt + d); 

%   Left 

EyN(1, :,:)   =  EyP(2,:,:)  + m1*(EyN(2,:,:) - EyP(1,:,:));      %  left - Ey; 

EzN(1, :,:)   =  EzP(2,:,:)  + m1*(EzN(2,:,:) - EzP(1,:,:));      %  left - Ez; 
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%   Right 

EyN(Nx+1, :,:)=  EyP(Nx,:,:) + m1*(EyN(Nx, :,:) - EyP(Nx+1,:,:)); %   right - Ey; 

EzN(Nx+1, :,:)=  EzP(Nx,:,:) + m1*(EzN(Nx, :,:) - EzP(Nx+1,:,:)); %   right - Ez; 

%   Front 

ExN(:, 1,:)   =  ExP(:,2,:)  + m1*(ExN(:,2,:) - ExP(:,1,:));      %   front - Ex; 

EzN(:, 1,:)   =  EzP(:,2,:)  + m1*(EzN(:,2,:) - EzP(:,1,:));      %   front - Ez; 

%   Rear 

ExN(:, Ny+1,:)=  ExP(:,Ny,:) + m1*(ExN(:,Ny,:) - ExP(:,Ny+1,:));  %   rear - Ex; 

EzN(:, Ny+1,:)=  EzP(:,Ny,:) + m1*(EzN(:,Ny,:) - EzP(:,Ny+1,:));  %   rear - Ey; 

%   Bottom 

ExN(:, :,1)   =  ExP(:, :,2)  + m1*(ExN(:,:,2) - ExP(:,:,1));     %   bottom - Ex; 

EyN(:, :,1)   =  EyP(:, :,2)  + m1*(EyN(:,:,2) - EyP(:,:,1));     %   bottom - Ey; 

%   Top 

ExN(:, :, Nz+1)=  ExP(:,:,Nz) + m1*(ExN(:,:,Nz) - ExP(:,:,Nz+1)); %    top - Ex; 

EyN(:, :, Nz+1)=  EyP(:,:,Nz) + m1*(EyN(:,:,Nz) - EyP(:,:,Nz+1)); %    top - Ex;    

 

Superabsorption ABCs (after magnetic field update): 

 
coeff1  = (c0*dt - d)/(c0*dt + d); 

rho     = c0*dt/d; RHO = 1 + rho; 

%   Left     

HyN(1,:,:) = (HyN(1,:,:) + rho*(HyP(2,:,:) + coeff1*(HyN(2,:,:) - HyP(1,:,:))))/RHO;  

HzN(1,:,:) = (HzN(1,:,:) + rho*(HzP(2,:,:) + coeff1*(HzN(2,:,:) - HzP(1,:,:))))/RHO;  

%  Right 

HyN(Nx,:,:) = (HyN(Nx,:,:) + rho*(HyP(Nx-1,:,:) + coeff1*(HyN(Nx-1,:,:) - 

HyP(Nx,:,:))))/RHO;  

HzN(Nx,:,:) = (HzN(Nx,:,:) + rho*(HzP(Nx-1,:,:) + coeff1*(HzN(Nx-1,:,:) - 

HzP(Nx,:,:))))/RHO;  

%   Front 

HxN(:,1,:) = (HxN(:,1,:) + rho*(HxP(:,2,:) + coeff1*(HxN(:,2,:) - HxP(:,1,:))))/RHO;  

HzN(:,1,:) = (HzN(:,1,:) + rho*(HzP(:,2,:) + coeff1*(HzN(:,2,:) - HzP(:,1,:))))/RHO;  

%   Rear 

HxN(:,Ny,:) = (HxN(:,Ny,:) + rho*(HxP(:,Ny-1,:) + coeff1*(HxN(:,Ny-1,:) - 

HxP(:,Ny,:))))/RHO;  

HzN(:,Ny,:) = (HzN(:,Ny,:) + rho*(HzP(:,Ny-1,:) + coeff1*(HzN(:,Ny-1,:) - 

HzP(:,Ny,:))))/RHO;  

%   Bottom 

HxN(:,:,1) = (HxN(:,:,1) + rho*(HxP(:,:,2) + coeff1*(HxN(:,:,2) - HxP(:,:,1))))/RHO;  

HyN(:,:,1) = (HyN(:,:,1) + rho*(HyP(:,:,2) + coeff1*(HyN(:,:,2) - HyP(:,:,1))))/RHO;  

%   Top 

HxN(:,:,Nz) = (HxN(:,:,Nz) + rho*(HxP(:,:,Nz-1) + coeff1*(HxN(:,:,Nz-1) - 

HxP(:,:,Nz))))/RHO;  

HyN(:,:,Nz) = (HyN(:,:,Nz) + rho*(HyP(:,:,Nz-1) + coeff1*(HyN(:,:,Nz-1) - 

HyP(:,:,Nz))))/RHO;  
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