HOW T0O USE

GRAPHICS LIQUI
CRYSTAL DISPLAYS

WITH PICS

JOHN BECKER

A step-by-step guide to understanding
and using pixel-matrixed graphics l.c.d.s
with your PIC microcontroller projects.

RAPHICS liquid crystal displays
Ghave been available for several

years. It would appear, though, that
EPE readers have not successfully
explored them. At least, that seems the log-
ical conclusion since we have never been
offered a design which uses them.

One reason may be that the prices of
such devices have, in many instances, been
somewhat expensive. Whilst many contin-
ue to be pricy for the average hobbyist, less
expensive ones have been making their
appearance.

Possibly the principal reason we have
not been offered working designs is that
readers have not been able to obtain, let
alone interpret, the data sheets associated
with them.

The latter stumbling block very
much faced the author when he
decided that he would like to know
how to use graphics displays.
Intermittently over several days,
he scoured the Internet in search of
their manufacturers and suppliers.
As it turned out, there are quite a
few around the globe, but when it
came to obtaining data sheets —
well, that was a totally different
matter.

DATA DENIAL

Farnell appeared to have a
selection of displays within a rea-
sonable price range, but stated “no
parametric data available”.
Attempting to Net-search for the
manufacturer of these devices,
Perdix, only revealed countless
sites to do with partridges (a bird
for which the Latin and Greek
name is perdix!)

Whilst research had showed that

298-4613) available turned out to be spe-
cific to a development kit which uses them.
However, in the RS catalogue, the man-
ufacturer of their displays is quoted as
Powertip. Doing a Net-search, and eventu-
ally accessing Powertip’s web site in
Taiwan, rudimentary data on the devices
was located. But, frustratingly, Powertip
denies access to its data sheets by those
who are not registered distributors.
Contacting the technical department at
RS, the author was put in touch with an
agent who imports from Powertip. This
company sent Powertip’s data sheet, a doc-
ument which might, perhaps, be under-
standable to those already familiar with
graphics l.c.d.s but is certainly not con-
ducive to teaching those who do not. Its

intelligibility is also marred by having
been translated by someone inadequately
familiar with English. Gross errors of fact
were spotted as well.

To cut short a lengthy and convoluted
tale, no manufacturer or supplier could be
found who had adequate data for graphics
displays available for download.

TOSHIBA T6963C

During the Net searches, however, vari-
ous manufacturers had stated that their dis-
plays were controlled by the Toshiba
T6963C chip, the same device as used by
Powertip. Seemingly, then, the control
architecture offered by the T6963C could
be regarded as an “industry standard”, and
thus worth pursuing further through a
Powertip display, the PG12864.

Toshiba state that the T6963C is an l.c.d.
controller that has an 8-bit parallel data bus
plus control lines for reading or writing
through a microcontroller interface (such
as a PIC).

It has a 128-word character generator
ROM (read only memory) which can con-
trol an external display RAM (random
access memory) of up to 64 kilo-
bytes. It can be used in text,
graphic and combination text-and-
graphic modes, and includes vari-
ous attribute functions.

Searching Toshiba’s web site,
the T6963C was eventually locat-
ed (under Analogue &
Peripherals/LCD Driver!), and its
46 page data sheet downloaded.

This data turned out to be the
key to getting to grips with graph-
ics l.c.d.s. Not so much because
the data sheet was intelligible
(which it did not become until
much later), but because it gave
programming examples of con-
trolling the T6963C, albeit written
in a microcontroller command
language unknown to the author.

There were, though, sufficient
commands whose structure
appeared to be close to some other
machine code dialects with which
" the author is familiar, for a trans-

RS Components supplies graphics - py.4, 1 Graphics I.c.d. screen showing the display generated 1ation to PIC microcontroller

displays, the only data sheet (RS

Everyday Practical Electronics, February 2001

by the author's first demo program.

Special Supplement | 1

language to be attempted.

O0OoOo

Photo 2. Toshiba’s demo display.

Success was achieved when the display

discussed, the commands are relevant to any
graphics l.c.d. which uses the Toshiba
T6963C controller, although the pin
count/order may differ between display types.
The PG12864 has the pinouts shown in Fig.1.

The PG12864 has a full dot-matrix l.c.d.
structure consisting of a visible screen area
having 128 dots x 64 dots (8192 dots in
total). There are eight data lines, DO to D7,
and six control lines comprising WR, RD,
CE, CD, RST and FS, names which will be
clarified shortly.

The display has a single positive supply
line (Vdd) at pin 3. The recommended
working voltage is 5V, with an absolute
maximum of 7V. There are two OV con-
nections, of which GND (pin 2) is the sig-
nal ground (Vss), and FG (pin 1) is the
ground connection for the display’s metal

connected to a negative voltage supply, of
about -5V, via a contrast-adjusting preset
potentiometer of typically 10k to 25k€2.

A summary of the pin functions is given
in Table 1.

Which brings us to the first of the major
discrepancies found in Powertip’s own data
sheet (be warned if you obtain it!):

1. Powertip quote data line DO as being
MSB. It’s not. DO is LSB (see Table 1).

2. Powertip also show an incorrect cir-
cuit diagram for the control of the screen
contrast. The control pot is shown wrongly
connected across pin 3 (+5V) and pin 9
(RST) with the wiper on pin 4 (CX).
Furthermore, pin 9 is marked as Vg
(=VE). This configuration does not work.

in Photo 2 appeared on the author’s

frame (bezel). - - -
Powertip PG12864 64 x 128 pixel graphics Display contrast is Table 1. Graphics I.c.d. pinout functions.
l.c.d. screen — eventually! controlled via pin 4, Pin Symbol | Function
named as CX in Fig.1
paWERTIp pG12854 but can also be 1 FG Frame ground (connected to metal bezel)
Whilst itis the Powertip PG12864 graphics referred to as V0. 2 GND Signal ground supply (Vss)
display (RS 329-0329) used in the demos This pin is normally |—° +5V Positive supply for logic (Vdd)
4 CX Negative supply (VO) for l.c.d. contrast
(=3:5V approx)
5 WR Data write (active low)
FG OV +5V CX WR RD CE CD RST DO D1 D2 D3 D4 D5 D6 D7 FS 6 RD Data read (active low)
i 2 383 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 - N
7 CE Chip enable (active low)
©® ©©® @ ©® 60 ©®0 00O 06060 6 e o 6
8 CD CD =1, WR = 0: command write
TOP FRONT CD =1, WR = 1: command read
CD = 0, WR = 0: data write
CD =0, WR = 1: data read
9 RST Module reset (active low)
10-17 | DO-D7 Data bus (DO = LSB, D7 = MSB)
18 FS Font select:
)) K X FS =0: 8 x 8 dots font
Fig.1. Pinouts of the Powertip PG12864 graphics I.c.d. module. FS = 1 (or open—circuit): 6 x 8 dots font
%oy IN] |C2 Jour +5V
78L05
COM . 11 32 m é |_T_B1J 5
R3
ol — ‘Oké , +VE +VE " +e Lol -
5 a' T RAO/ANO PSPO/RDO 20 EPREET] Do
1N4148 == = RAvANT PSP1/RD1 = = 2] O
k =) RA2/AN2/VREF — PSP2/RD2 D2
+ 5 22 13 13
C3 C5 mum 5] RAS/ANSVREF+ PSP3/RD3 I rramry IS
221 100n = | RA4/TOCKI PSP4/RD4 == ey 20
* *R2 = RA5/AN4/SS PSP5/RD5 D5 X2
5 2a o 8 PSPO/RDS [L D6 LCD.
] ¢ AN] reoansimo pnind £ i7_17) > GRAPHICS
¥ 2 5 5 MODULE
To| REVANSWR 15 WR PG12864-F
=j RE2/AN7/CS T10SO/T1CKI/RCO =1 8 6 RD
c1 16T 77—
R1 10p T10SVCCP2IRCT = cE .
1k T B CCP1/RC2 _Im 8 8y 5 ex
11] OSC1/CLK IN SCK/SCLRC3 23_I I et
spsDARCH ACENLY
T N ! —
’ — IC1 TX/CK/RCE z—z B3 * —i—lz | I 2|
2 PIC16F877 TXIDT/RCT — [] PN
10p 33 o HVE _-I
14 INT/RBO D4
— 0SC2/CLK OUT RB1 z‘; ol ps
RB2 O | pe
powres [olor |, le
MCLR RB4 38 © ES 1 +VE
RB5 139 OlE_ —nC. osc
PGCLK/RB6 == RW 20+
) PGDARE? | i ov . ['7%630’ v
Vo)
st |-Io GND GND L] i il c- out
ND
12 31 VR2* S
B 10k 2
ov O
*SEE TEXT
. P 2 [0 i i £ PROGRAMMER
Fig.2. Circuit diagram for the PIC- 5 VD AR GI%
controlled Graphics L.C.D. Demo.
Everyday Practical Electronics, February 2001
OO0 2] speciar supplement ryday &

TO PIC PROGRAMMER (SEE TEXT)

DATA 0V
MCLR CLK

& IC3 &

I'N'I @

+5v—

RE2 ®

ERE

VR1

éz“} ﬁ j

o

IN ox
+9V ——=@ OUT % +V
IC2 o
3 ov
o TO
ALPHANUMERI
@ RAO®) U ; c
oV = RA1® E (SEE TEXT)
RA2® RS
RA3 ® D7 e
@ RA4 D6 O——g)
o1 2 RAS ® D5 p o
_ k© . o1 Ds O o—00| 00
RE1® Lo]

o

SGORR. Y

Frrrrrrri
12345678 9101112131415161718
FG +5V WR CE RST D1 D3 D5 D7
OV Vo RD CD DO D2 D4 D6 FS

2-3in (58mm)

TO GRAPHIC L.C.D. 7 . 4
printed circuit board.

Fig.3. Component and full size copper foil track
master pattern for the Graphics L.C.D. Demo

37in
(94mm)

Pin 9 (RST) does not go to —VE. It is
held at logic 1 (+5V) for normal control
chip operation and may be taken (briefly)
to OV to reset the chip, but it must never be
taken negative, nor should one side of the
control pot ever be connected to this pin.

Experimentation showed that the control
pot’s wiper should be connected to pin 4.
One outer terminal of the pot then connects
to a negative supply of, for example, —5V.
The unused pot terminal is best connected
to the wiper. This is illustrated in the demo
circuit diagram (Fig.2.). The preset is
adjusted until the desired contrast is
observed.

The Toshiba data sheet does not discuss
l.c.d. contrast setting, whilst that from RS
is highly ambiguous on the subject.

DEMO CIRCUIT

The circuit diagram which the author
used in his examination of the PG12864
display is shown in Fig.2. The circuit
includes a PICI6F877 microcontroller
(IC1), a crystal (X1) and its two capacitors
(C1, C2), a 5V voltage regulator (IC2), a
negative voltage inverter (IC3) with its two
capacitors (C6, C7), the PG12864 l.c.d.
display (X2) which is connected to the PIC
via connector pins TB1, contrast control-
ling preset (VR1) and switch S1.

Components R1 and D1 are included so
that the PIC may programmed on-board
via connector TB2 and a suitable PIC pro-
grammer, such as the author’s PIC Toolkit
Mk2 (May—June *99).

Resistor R2 and l.e.d. D2 were used by
the author when originally translating the
Toshiba demo program, the l.e.d. being set
on or off at strategic points in the develop-
ing software. They have been left in and

Everyday Practical Electronics, February 2001

COMPONENTS
Resistors
R1 1k
R2 470Q
R3, R4 10k (2 off)

All 0-25W 5% carbon film.

Potentiometers See

VR1 22k (or 25k)
min. preset, §D:D©P
round
VR2 10k min. TALK
preset, round page
(see text)
Capacitors
C1, C2 10p ceramic, 5mm pitch
(2 off)
C3, C6, C7 22u radial elect. 16V
(3 off)
C4, C5 100n ceramic, 5mm pitch
(2 off)
Semiconductors
D1 1N4148 signal diode
D2 red l.e.d. (see text)
IC1 PIC16F877

Approx. Cost
Guidance Only

£50

excluding case & batt.

microcontroller,
pre-programmed

(see text)

IC2 78L05 +5V 100mA
regulator

IC3 7660 negative voltage
converter

Miscellaneous

St min. s.p. push-to-make
switch

X1 3-2768MHz crystal (see
text)

X2 graphics l.c.d. module,
Toshiba T6963C-
based, 64 x 128 pixels,
e.g. Powertip
PG12864-F (see text)

Printed circuit board, available from
the EPE PCB Service, code 288; 8-pin
d.i.l. socket; 40-pin d.i.l. socket; terminal
pin header strips and connectors (see
text); 18-way ribbon cable (a few cen-
timetres); p.c.b. supports (4 off); solder,
etc.

may be similarly used by readers when
writing their own software. The control
line is PORTE pin 0 (REO).

Resistor R4 is included to keep the
l.c.d’s CE line high when the PIC is being
programmed (so avoiding random displays
appearing on the screen during that
operation).

Resistor R3 biases high open-collector pin
RA4 allowing demo-stepping switch S1 to
operate correctly.

Spedial Supplememnt | 3

Components VR2 and TB3 are dis-
cussed in a moment.

A d.c. supply of between about 7V and
12V (nominally stated as +9V) can be used
for powering the circuit via the 5V regula-
tor, 1C2.

Incidentally, the crystal clock
frequency is not a critical matter and
other frequencies could be used. If a
crystal of greater than 4MHz is used,
though, the PIC’s configuration bit OS1

G G

OOoOo

EPE Online
Note that the circuit boards used in EPE Online projects are available from the EPE Online Store at www.epemag.com (also note that the codes for the boards in the store are prefixed with 7000, so a board with a code of say 256 will appear as 7000256 in the online store).

EPE Online
Note that you can purchase pre-programmed PIC microcontrollers for our PIC projects (see the “ShopTalk” page in the associated issue of the Magazine for more details). Alternatively, if you wish to program the PIC yourself, you can find the code files by bouncing over to the EPE Online Library (visit www.epemag.com, click in the “Library” link in the top navigation, then on the “Project Code Files” link).

oOOC[

Photo 3. Demo printed circuit board assembly.

should be set high and OSO set low (see
later).

For his own demo board, the author in
fact uses a SMHz crystal, which does frac-
tionally speed up Demo 8.

It may also be worth bearing in mind
that the author’s forthcoming follow—up
constructional article, in which a
PIC16F877 and the same graphics l.c.d. are
used, also requires a SMHz crystal.

PRINTED CIRCUIT
BOARD

It is emphasised that unless you have a
PIC programmer, there is no point in build-
ing this design since much of the discus-
sion here concerns experimental software
changes that you are recommended to try.
These changes, once made, need the soft-
ware to be re-assembled and downloaded
to the PIC.

A printed circuit board design and its
component layout are shown in Fig.3. This
board is available from the EPE PCB
Service, code 288.

You will observe that the p.c.b. includes
components VR2 and TB3 towards the
right. These are the points at which the
author also included an ordinary alphanu-
meric l.c.d. so that various routines could
be monitored during the development of
the software translation from Toshiba to
PIC.

The holes and tracks have been left
intact so that the p.c.b. could be used as a
future general-purpose development board
with either type of l.c.d., and in conjunc-
tion with a PIC16F877.

A circuit diagram for the second l.c.d. is

Special Supplement

LSB
MSB

forn

easesd
oo
-

.
" e
o
e -

i
-
.

. s FlmlE 4 L | L
; At

R A e e e e T e P R e
B e e e e o e S

not included here, but
the pin order and
functions, and the
controlling software
subroutines, are the
same as used in other
recent “normal” l.c.d.
projects designed by
the author and pub-
lished in EPE. The
connections can be
ascertained by study-
ing any of those. In
Fig.2, the connections
are shown as TB3,

with VR2 as the
contrast control.
CONSTRUCTION

It is expected that all who build the cir-
cuit will be sufficiently experienced not to
need constructional advice. It is recom-
mended, though, that sockets are used for
IC1 and IC3, and that pin header strips are
used for the TB1 to TB3 connections.

Ideally, a graphics l.c.d. should be pur-
chased that already has a suitable pin con-
nector wired to it (see this month’s
Shoptalk page). The connections to the
p.c.b. are in the “natural” order of the
PG12864 l.c.d. used (as shown previously
in Fig.1).

PIC PROGRAMMING

Having built the board and proved its
workability, three lots of software need to
be programmed into the PIC, one now and
two later.

Before doing so, though, the PIC needs
to be configured with the following set-
tings (which are all PIC Toolkit Mk2
default settings for a PIC16F877 running at
4MHz):

CP1 CPO DBG NIL WRT CPD LVP
1 1 1 1 1 1 0
BOR CP1 CPO POR WDT OS1 OSO
0 1 1 0 0 0 1

Note that Logic 1 and Logic 0 in the set-
tings do NOT necessarily mean that the
function is on/off respectively — refer to the
PIC ’87 data sheet if you need to know
more (also see earlier regarding the oscilla-
tor rate).

For the first part of the discussion that
follows, you need the Toshiba demo

Fig.4. Character set for the Powertip PG12864 display (note
that the last two lines may differ in some modules).

program loaded into the PIC,
GRAPHEPE.OBJ (source code name
GRAPHEPE.ASM). The software is writ-
ten in TASM, but PIC Toolkit Mk2 can
translate between TASM and MPASM if
the latter is the programming language you
are used to.

Two other program files will be loaded
into the PIC later on.

The software is available free via the
EPE web site, or on 3-5-inch disk (for
which a nominal handling charge is made)
from the Editorial office. See Shoptalk for
details of both matters.

Having loaded the Toshiba demo, the
display shown earlier in Photo 2 should be
seen. It may be necessary for preset VRI to
be adjusted before the image is clearly
visible.

It is this demo result which is first dis-
cussed before moving on to the author’s
demos, for which various exercises are
suggested at some points.

DISPLAY STRUCTURE

Before starting to discuss programming
detail, it is necessary to understand the
physical arrangement of the ways in which
data can be shown on the l.c.d. screen.
There are three options, which can be
summarised as:

1. Alphanumeric text display using
the built—in character generator (as with
any standard alphanumeric l.c.d.). 128
characters are available, as shown in
Fig.4, and which are called by their own
location numbers. In a very loose sense
they can be regarded as the equivalent of
ASCII characters. The addressing num-
ber order runs from zero to 127. Writing
any of these values to the screen displays
the “text” character associated with it.
The characters in lines 7 and 8 may be
slightly different in some variants of the
PG12864 display.

2. User—defined character generation
and display. Again this is similar to the
facilities available on standard alphanu-
meric l.c.d.s, but the quantity of characters
that can be simultaneously stored is far
greater, 128 compared to the typical eight.
The addressing order runs from 128 to 255.
Writing any of these values to the screen
displays the character that the user has
created and allocated to the address value.

Everyday Practical Electronics, February 2001

3TO8 117T064

6x8BIT |, 6x8BIT | 6 x 8 BIT FONT MODE
“coLumn 7 1*coLumn 27 1% coLumNs 370 20

TEXT GRAPHICS 8x8BIT | 8x8BIT _,l 8x 8 BIT FONT MODE _,,

LINES LINES ¥ COLUMN 1 COLUMN 2 COLUMNS 3 TO 16
1 —— BITS 7 AND 6 NOT SCREENED IN 6 x 8 FONT MODE
2
3 76543210 ALL8BITSUSED IN8x8 FONT MODE

i 4 [T X
5 Xx+1
6 = x:2 | CGRAM
7 o x+3 | (USER DEFINED)
v 8 L8 x+4 [ADDRESS

9 x+5 | BYTE NUMBER
10 HIGH x+6
1 X+7
12 -
13 GRAPHICS CELL T T] 'N.GRAPHICS 6 x 8 FONT MODE EACH
14 1 BYTE HIGH CELL STILL EQUALS ONE GRAPHICS BYTE

FULL VISIBLE SCREEN HAS 128 PIXELS HORIZONTALLY
64 PIXELS VERTICALLY AND DISPLAYS

16 x 8 = 128 TEXT CELLS IN 8 x 8 FONT MODE

20 x 8 = 160 TEXT CELLS IN 6 x 8 FONT MODE

Fig.5. Pixel, column and row distribution for the graphics I.c.d.

3. User—defined graphics detail gener-
ation in which the “character” size is one
pixel high by eight pixels wide (i.e. a sin-
gle byte). Any value between zero and 255
can be written to the screen and the setting
of the binary bits that make up that value
determines whether a screen pixel is turned
on or off.

For both character modes, the characters
are all eight pixels high, but the width can
be specified as six or eight pixels. That is,
the character generation (font) can be set
for 6 x 8 or 8 x 8 format.

Line FS controls the font choice, FS =0
for 8 x 8, FS =1 for 6 x 8. The pin has an
internal pull-up resistor that holds it high
(FS = 1) and the pin may be left uncon-
nected if the 6 x 8 font is required (also see
later).

In 8 x 8 font mode (FS = 0), the screen
can display 16 characters horizontally and 8
vertically. In 6 x 8 font mode (FS = 1), the
display format is 20 horizontal x 8 vertical
characters. It is conventional to refer to the
character display in terms of lines (horizon-
tal) and columns (vertical). See Fig.5.

For the graphics mode, 64 character
locations can be written to vertically.
Horizontally, the quantity is determined by
the width mode set for the characters, i.e.
20 or 16.

There are two screen memory areas to
which data is written, known as the Text
screen and the Graphics screen. The Text
screen displays the built-in and user-
defined characters. The Graphics screen
displays only graphics data.

The l.c.d. can be programmed to display
Text only, Graphics only, or Text and
Graphics combined.

There are many additional display
attribute features that can be implemented,
such as highlighting, blanking, flashing,
panning etc.

COMING NEXT

The next several sections of this discus-
sion relate to the T6963C l.c.d. controller,
and how Toshiba’s example programs are
interpreted using the PG12864 graphics
display and a PIC16F877 microcontroller,
resulting in the display shown earlier in
Photo 2.

Following this, the author’s own
examples of PIC-microcontrolling the
l.c.d. in a variety of situations will be
described. In a future issue, this same
graphics l.c.d. will be the display used in
a PIC-controlled audio frequency oscil-
loscope (currently having the working
title of PIC G-Scope).

Everyday Practical Electronics, February 2001

There is lot of information discussed from
hereon, but it is illustrated with working
program examples, and with many points at
which you can experiment with various
commands in the author’s own demos.

As usual with this type of article, the
author tries to lead you carefully from step
to step.

CONTROL MATTERS

Those of you familiar with alphanumer-
ic (“intelligent”) l.c.d. displays will be
aware that they can be operated in either 4-
bit or 8-bit data mode. They can also be
controlled by just two control lines, RS
and E, and rely on a predetermined delay
between sending bytes or nibbles of data.

The same is not true of graphics
displays. Those using the T6963C can
only be operated in 8-bit mode. They use
five control lines and require status
check routines to be performed before
each action. Timed delays are not
used, nor can they be
used between data

CONTROL LINES

Data is written to or read from the l.c.d.
via the eight data lines DO to D7. Three
control lines are used in most read or write
situations:

CD: selection of data or command
function, 0 = Data, 1 = Command

CE: chip enable, 0 = enabled, 1 = disabled

RD or WR: read or write functions. These
are two separate lines and the relevant one
is taken low to be active, with the other
remaining high.

The timing characteristics for the setting
of the data and control lines are shown in
Fig.6 and Table 2.

Since the l.c.d. includes its own
oscillator, the timings shown are indepen-
dent of the clock rate controlling a PIC
microcontroller.

PIC PORT SETTINGS

In the demo programs, PIC PORTC is
used for setting the l.c.d. control lines, and
PORTD for the data input/output lines.

Some microcontrollers and micro-
processors have internal registers which
allow the same data port to be used either
for input or for output without the user
having to specify the port’s function, other
than by the write or read command.

For example, the required port (e.g. paral-
lel port connector on a PC computer) has
two separate register addresses, one for
inputting data, the other for outputting it.
These would be equated as values at the
head of the program, e.g. OUTPORT =
&H378 (output register), INPORT = &H379

Table 2. Toshiba T6963C Timing Values

transfers. . .
There are, though, Item Symbol Min Max Unit
delay requirements C/D Set-up Time teos 100 - ns
concerning the order C/D Hold Time CDH 10 - ns
in which the data and CE, RD, _ tees tros twr 80 - ns
control lines are taken WR Pulse Width
high or low, a matter Data Set-Up_ Time tos 80 - ns
which is discussed /I:\)ata HO.:.(.:' Time ttDH 40 1;0 ns
. Status checki ccess fime ACC - ns
B SIS Output Hold Time {oy 10 50 ns
shortly. Test Conditions: Vp, = 5-0V + 10%, Vgg = 0V, Ta = —20 to 75°C
C/D X X
tcobs tcoH
\ /
tce. tRp. twR
RD, WR \
tos

DO TO D7 7 :

(WRITE;

() X

| toH
DO TO D7
(READ) E—
tacc toH

Fig.6. Timing waveforms for the Toshiba T6963C graphics I.c.d. controller, see also

Table 2.

Spedcial Supplememnt

5

O0OoOo

Table 3. Toshiba T6963C Status Register Settings

STAO DO Check command execution capability

Listing 1. CHECK3 - Status check for PORTD RDO/RD1

STA1 D1 Check data read/write capability

STA2 D2 Check Auto mode data read capability

STA3 D3 Check Auto mode data write capability

STA4 D4 Not used

STA5 D5 Check controller operation capability
STA6 D6 Error flag. Used for Screen Peek and

Screen copy commands
STA7 D7 Check the blink condition

0 : Disable (STAO/STAL) = 3. See also flow chart Fig.9.
1 : Enable CHECK3:
0 : Disable PAGE1 ; set for Bank 1 (DDR bank)
1 : Enable MOVLW 255
0 : Disable MOVWEF TRISD ; set PORTD for input
1: Enable PAGEO ; set for Bank 0 (Data port bank)
0 : Disable :RST CD CE RD WR
1: Enable MOVLW %00011001 ; 1 1 0 0 1

. MOVWEF PORTC ; set CE, RD low
0 : Disable NOP ; pause to allow port to stabilise
1 : Enable CK3:
0 : No error BTFSS PORTD,0 : PORTD bit 0 set?
1: Error

- GOTO CK3 ; no
0 : Display off
1 : Normal CK3A:

display BTFSS PORTD, 1 ; PORTD bit 1 set?

GOTO CK3A ; NO

(input register), both numbers referring to
the same physical port.

To read data from the port, a command
such as VALUE = INP(INPORT) would
load the data present on the port connector
and store it into the variable VALUE.

Similarly, to write data held in variable
VALUE to the port, a command such as
OUT(OUTPORT), VALUE would be used.

PIC microcontrollers, though, do not
have this dual-function automatically
available. A port’s data direction register
(DDR) has to have its input/output direc-
tions actively set from within the program
prior to data input or output.

As you are no doubt aware, this is where
PAGE and TRIS commands come into use
in the PIC16x84, for example, setting the
STATUS register Page (Bank) address
through which the DDR is changed
(STATUS bit 5 = high).

The PIC16F877, as used for this demo,
has rwo STATUS register bits to be
manipulated in order to enter the DDR
setting mode, STATUS bits 5 and 6 (RPO
and RP1 — their full use will be discussed
in a forthcoming EPE feature article). To
set for Bank 1 (to access the DDR regis-
ter), RP1 is set low, and RPO is set high.
To return to Bank O (for accessing the
data port itself rather than its DDR), RPO
is returned low.

When Banks 2 and 3 are not used (as
with this demo), it is convenient to define
the setting of RP0 using the familiar PAGE
commands, e.g.:

#DEFINE PAGEO BCF STATUS,5
#DEFINE PAGE1 BSF STATUS,5

With RP1 held low, switching back and
forth between DDR and data port address-
es is simplified, and is the technique used
in the demo programs.

STATUS CHECKS

Just as a PIC microcontroller has a
STATUS register which informs of the
results following various functions or com-
mands (through bits C, DC and Z), so too
does the T6963C. It is an 8-bit register of
which seven bits are used, having the func-
tions shown in Table 3.

In practice, there are only three forms
of status check normally required,
depending on the type of control function
being used at that moment. There is an
easy logic to status checks and examples
of those used for different circumstances
are illustrated in the author’s own demo
routines.

oOoO[s

Spedcial Supplememnt

Let’s take the most

frequently used status | MOVWF PORTC
check as a first exam- | NOP

ple. Itis used immedi- | PAGE1

ately prior to writing | CLRF TRISD
data (of any sort, dis- | PAGEQ

play data or command | RETURN

data) to the l.c.d. It

MOVLW %00011111

;RST CD CE RD WR

;1 1 11 1

; set controls high

; pause to allow port to stabilise

; set PORTD as outputs

simply entails reading

the STATUS register to check whether bits
STAO and STAL1 are high (= 1), and if not,
then waiting until they are. This is shown
in the flow chart of Fig.7.

‘ STATUS ’

RETURN

Fig.7. Flow chart for the most com-
monly used status check, which waits
for bits STAO and STA1 to become
high (logic 1).

To explain the convention of the flow
charts used in this discussion, the entry and
exit points of the routine are indicated by
the oval shapes enclosing, for example, the
name of the routine and its end point.

Thus in Fig.7, the “working” aspect of
the chart is simply that within the diamond
shape. Here the question being represented
is what status do STAO and STA1 have.
The question is repeated until they are both
at logic 1, whereupon the routine ends.

An example of writing data to the l.c.d.
is shown in the flow chart of Fig.8. It

Photo 3. The minutely detailed rear
view of the Powertip PG 12864 display.

shows the status check, and then a rectan-
gle stating the next action to be taken
(write data) following the successful status
check. After which the routine ends.

Immediately prior to reading the status
register, command lines are set for CD and
WR high, with CE and RD low:

CD CE RD WR
1 0 0 1

This condition remains throughout the
repeated checking of the status. Upon its
successful conclusion, all four lines are
returned high:

CD CE RD WR
1 1 1 1

In the PIC program, the status checking
flow chart becomes that in Fig.9.

Note that the square brackets statement
[CALL CHECK3] indicates the command
the PIC software issues in order to access
the routine. Square brackets statements are
used in other flow charts for a similar
purpose.

The entry point address label of
CHECKS has been given because the rou-
tine checks if the value of input bits 0 and
1 is equal to 3 (binary 11, i.e. both high).

The PIC source coding involved is
shown in Listing 1. Note that the RST bit is
that which controls the reset of the T6963C
(but does not perform such functions as

‘ STATUS ’

DATA WRITE
RETURN

Fig.8. Flow chart for writing data to the
l.c.d.

Everyday Practical Electronics, February 2001

CHECKS3

CHECK IF BITS 0 AND 1 OF L.C.D.
STATUS REGISTER ARE HIGH

ENTRY TO
STATUS CHECK3
[CALL CHECK3]

SET DATA PORT (D)
FOR INPUT

SET CONTROL PORT (C)
CD CE RD WR
1 0 0 1

READ DATA
ARE BITS 0/1 HIGH?
(=3)

NO

YES

SET CONTROL PORT (C)
CD CE RD WR
11 1 1

SET DATA PORT (D)
FOR OUTPUT

END OF SUB-ROUTINE

Fig.9. Flow chart for status check
named as CHECKS.

screen or memory clearing). It is held high
throughout the normal use of the l.c.d.,
only being cleared briefly when the pro-
gram commences.

In the Listings, note that the Labels are
placed above the commands in order to
conserve page space. In the full source
code, they are to the left and the commands
are indented as usual. In preparing this text
for publication, other minor cosmetic
changes have been made to some listings
compared to the actual source code itself.

DATA WRITE

On entry to the data write routine
(OUTDATA) the control lines are first set
for data output in which line CD is taken
low, with the other control lines set high:

CD CE RD WR
0 1 1 1

The data to be sent is then placed on the
data port output lines. Now, with CD

remaining low, the CE and WR command
lines are taken low, leaving RD high:

CD CE RD WR
0 0 1 0

Next, and still leaving CD low, the CE
and WR lines are again taken high:

CD CE RD WR
0 1 1 1

After which the data write routine can be
exited, leaving CD low. However, the
author chooses to leave all control lines in
the known setting of all high, so the previ-
ous routine is followed by returning CD
high before exiting or performing the next
required command:

CD CE RD WR
1 1 1 1

The PIC source coding lines for the
OUTDATA routine are shown in Listing 2
and associated flow chart in Fig.10.

OUTDATA

OUTPUTS SINGLE DATABYTE TO L.C.D.

ENTRY TO
DATA OUTPUT
[CALL OUTDATA]

SET CONTROL PORT (C)
CD CE RD WR
o 1 1 1

OUTPUT DATATO

DATA PORT (D)

SET CONTROL PORT (C)
CD CE RD WR
0 0 1 0

v

SET CONTROL PORT (C)
CD CE RD WR
o 1 1 1

v

SET CONTROL PORT (C)
CD CE RD WR
11 1 1

END OF SUB-ROUTINE

Fig.10. Flow chart for outputting data
to the l.c.d.

Listing 2. OUTDATA - send data to l.c.d. routine. See also

flow chart Fig.10.
OUTDATA:
MOVWF TEMPA

; temp store val brought in on W
;RST CD CE RD WR

TOSHIBA’S
DEMO

Having set the
first simple scenes, it

controlled by a Toshiba T6963C by first
discussing the sub-routines used in
Toshiba’s own demo program, the results
of which you saw in Photo 2.

The program listings shown are the
author’s translations to PIC control lan-
guage from the language used in Toshiba’s
original program (written for their micro-
controller type TMPZ84COOP). Slight
changes to Toshiba’s program have been
made apart from the translations.

The program is written for a 20 column
x 8 line display, in 8 dots mode (font).

FIXED VARIABLES

As shown in our full program source
code listing file, the PIC source code has
its usual EQUates and #DEFINEs set at the
beginning. Then follow fixed equates val-
ues for some specific commands, as speci-
fied by Toshiba, and shown in Listing 3.

Then, as said earlier, PORTC is set for
control line output, and PORTD for data
input/output.

It is worth noting that l.c.d. line FS (that
which selects between font widths, FS = 0
= 8-bit, FS = 1 = 6-bit) is controlled by
PORTC bit 5. The selection of which font
mode is chosen is provided in the subrou-
tine which sets the DDR registers for
PORTC and PORTD. As said earlier, line
FS has an internal pull-up resistor.

The choice of having FS high or low is
then determined by the DDR setting of
PORTC bit 5 (TRISC bit 5). With DDR bit
5 set for input (= 1), PORTC bit 5 presents
a high impedance to line FS, which thus
adopts the logic high status as set by the
internal pull-up resistor.

With the DDR bit 5 set for output (= 0),
line FS is thus controllable by the output
value of PORTC bit 5. With Toshiba’s
demo, DDR bit is set high to use the 6 x 8
font. All the author’s demo routines which
write to PORTC have bit 5 set permanent-
ly low, which with DDR bit 5 set for output
causes FS to be permanently set low, so
selecting the 8-bit font.

Should you want 6-bit mode for another
design, set DDR bit 5 for input, as with
Toshiba’s demo. Note that when program-
ming the PIC in situ, the l.c.d. will show
screen data in 6 x 8 font mode since
PORTC is held in high impedance during
programming.

DEMO SUBROUTINES

The PIC source code for calling each of
Toshiba’s demo routines to be discussed is
shown in Listing 4. The first four routines
are required to be run at the start of any
program. They specify the address loca-
tions and column area of the Text and

MOVLW %00010111 ; 1~ 0 1 1 1 seems best to illus- Graphics display memory areas.
MOVWEF PORTC ;s set CD low trate the capabilities The l.c.d.’s total available memory
MOVF TEMPA,W ; get stored data of a graphics l.c.d. runs from addresses $0000 to $FFFF
MOVWF PORTD ; send data
NOP ; pause to allow port to stabilise

:RST CD CE RD WR Listing 3. Toshiba’s fixed variables
MOVLW %00010010 ; 1 0O 0 1 0 TXHOME: .EQU $40 ; text home (start) location
MOVWF PORTC ; set CD, CE, WR low TXAREA: EQU $41 ; text area, i.e. number of active
NOP ; pause columns

;RST CD CE RD WR GRHOME: .EQU $42 ; graphics home (start) location
MOVLW %00010111 ; 1 0 1 1 1 GRAREA: .EQU $43 ; graphics area, i.e. number of
MOVWF PORTC ; set CE, WR high active columns
NOP ; pause AWRON: .EQU $B0O ; autowrite on command

;: RST CD CE RD WR AWROFF: .EQU $B2 ; autowrite off command
MOVLW %00011111 ; 1 1 1 1 1 OFFSET: .EQU $22 ; graphics offset
MOVWF PORTC ; set CD high ADPSET: .EQU $24 ; set address pointer command
RETURN PEEK: .EQU $EO ; read data from screen command

Everyday Practical Electronics, February 2001

Spedial Supplemaemnt E

O0OoOo

OO0

Listing 4. PIC source code for calling Toshiba’s demo

routines flow chart Fig.11.
CALL TEXTHOME ; set Text Home address CLRF ADRMSB
CALL GRAPHHOME ; set Graphic Home address CLRF ADRLSB
CALL TEXTAREA ; set Text Area CALL CMDADR
CALL GRAPHAREA ; set Graphic Area MOVLW TXHOME

CALL SENDCMD
CALL SETMODE ; set Mode (e.g. OR mode, internal RETURN

Character Generator)
; set Offset register for character code

CALL SETOFFSET
$80
CALL SETDISPLAY

; set Display Mode (Text on, Graphics

Listing 5. TEXTHOME - set Text Home address. See also

; set Text Home address to $0000
; send 2 bytes of address data

; send TXHOME command

Listing 6. CMDADR - send command address to LCD. See

; read status for DAO/DA1 =3
; send address LSB

; read status for DAO/DA1 =3
; send address MSB

and Cursor off) also flow chart Fig.12.
CALL CLRTXT ; clear Text Area CALL CHECK3
CALL WRITECG ; write to external (user—defined) MOVF ADRLSB,W
character generator RAM CALL OUTDATA
CALL WTDD ; write Text Display data (internal CG CALL CHECK3
ROM) MOVF ADRMSB,W
CALL WTDD2 ; write Text Display data (external CG CALL OUTDATA
RAM) upper part RETURN
(64K bytes). The l.c.d.’s actual visible
screen area, though, is 1024 bytes (1K) CMDADR
and so 64K of available memory area can TS AR O A RS L ATED)
be regarded as holding up to 64K/1K = COMMANDS
64 screen pages of data. As will be seen
later, this allows for pages of data to be T AL INTER
stored “behind the scenes” and then [CALL CMDADR]
called as required by simply changing
the Text Home or Graphic Home
addresses. BTATUS
Toshiba state that Text data, Graphic STAO,1=3?
[CALL CHECK3]

data and user-defined CG RAM can be
freely allocated to the full memory area, a
matter on which they do not elaborate. It
would seem logical, though, for the total
area required for each data set to depend
upon the total data required to be stored for
that set.

Toshiba’s demo, for example, has seven
text letters, amounting to 7 x 8 = 56 bytes
of data (each letter is eight bytes high) and
eight user-created graphic symbols, mak-
ing a further 8 x 8 = 64 bytes. Toshiba allo-
cate the Text Home address to $0000 and
the Graphics Home address to $0200, thus
allocating a maximum of 512 bytes avail-
able for text use should the demo be
expanded upon.

The routines which set these facts are
TEXTHOME and GRAPHHOME.
Referring to routine TEXTHOME in
Listing 5 and Fig.11, the text address value
($0000) is set into the 2-byte address word
consisting of bytes ADRMSB and
ADRLSB, which in this instance are both
cleared to zero.

The routine CMDADR (command
address) is then called, in which the

TEXTHOME

SET TEXT HOME ADDRESS TO $0000

ENTRY TO
SET TEXT HOME ADDRESS
[CALL TEXTHOME]

I SEND COMMAND ADDRESS I

[CALL CMDADR]

v

I SEND COMMAND (TXHOME) I

[CALL SENDCMD]

(enpoF sus-rouTINE)

Fig.11. Flow chart for routine

TEXTHOME.

Special Supplement

YES
SEND ADDRESS LSB
[CALL OUTDATA]

TUS
STA0,1=3?

[CALL CHECK3]

SEND ADDRESS MSB
[CALL OUTDATA]

END OF SUB-ROUTINE

Fig.12. Flow chart for routine

CMDADR.

MSB/LSB address is sent to the l.c.d., as
shown in Listing 6, and flow chart
CMDADR in Fig.12.

As will be seen, the first action in
CMDADR is to check the l.c.d. status via
sub-routine CHECK3, as discussed earlier
(Listing 1, Fig.9).

Next, the address LSB is sent to the 1.c.d.
via the OUTDATA routine, also discussed
earlier (Listing 2, Fig.10). A further
CHECK3 status check is made and the
address MSB is sent, again via OUTDATA,
and the routine is exited.

SENDCMD

OUTPUT COMMANDS TO L.C.D.

ENTRY TO
COMMAND OUTPUT
[CALL SENDCMD]

TUS
STAO,1=3?

[CALL CHECK3]

YES

OUTPUT COMMAND DATA TO
DATA PORT (D)
COMMAND VARIES WITH
FUNCTION

v

SET CONTROL PORT (C)
CD CE RD WR
1.0 1 0

v

SET CONTROL PORT (C)
CD CE RD WR
11 1 1

(enporsus-rouTiNE)

Fig.13. Flow chart for routine

SENDCMD.

3) to be $40. This is a fixed command value
that must be sent to the l.c.d. via routine
SENDCMD each time the Text Home
address is changed. Other commands are
sent in other situations, as will become
apparent as we discuss and illustrate them.

The SENDCMD routine is shown in
Listing 7 and its flow chart Fig.13.

Having sent the TXHOME command, a
RETURN is made to the calling routine.

From Listing 5, you will have seen that
the command to be sent, TXHOME in

The address is now
stored in the l.c.d. but
has not been acted upon

X ' MOVWF TEMPA
yet. It is brought into CALL CHECK3
action at the end of | \;oyE TEMPA,W
Listing 5 by sending the MOVWE PORTD
TXHOME command to NOP
the 1.c.d. via sub-routine MOVLW %00011010
SENDCMD. MOVWF PORTC

The value of NOP
TXHOME, you will | \yovyw 000011111
recall, was specified at MOVWE PORTC
the beginning of the RETURN

program (see Listing

Listing 7. SENDCMD - send command instruction to LCD.
See also flow chart Fig.13.

; temp store val brought in on W
; read status for DAO/DA1 =3

; recall stored data

; send stored data

;RST CD CE RD WR

;o1 1 0 1 0

; set CE, WR low

;RST CD CE RD WR

;o1 1 1 1 1

; set all high

Everyday Practical Electronics, February 2001

LISTING 8. TEXTAREA — set Text Area. See also flow chart

Listing 10. SETDISPLAY - set text/graphics/cursor on/off.

; text on, graphic off, cursor &
blink off ($94)
; send command

Fig.14. See Table 4.
CLRF ADRMSB ; set Text area (columns) MOVLW %10010100
MOVF COLUMN,W ; column quantity (preset for 20 columns)
MOVWF ADRLSB CALL SENDCMD
CALL CMDADR ; send 2 bytes of address data RETURN
MOVLW TXAREA
CALL SENDCMD ; send TXAREA command
RETURN
CLRF ADRMSB
MOVLW $02
Listing 9. SETMODE - set INT/EXT/AND-OR-XOR mode. MOVWF ADRLSB
See Table 4. CALL CMDADR
MOVLW %10000000 ; External CG RAM, OR mode MOVLW OFFSET
CALL SENDCMD ; send command CALL SENDCMD
RETURN RETURN

Listing 11. SETOFFSET - Set Offset register.

; address value stated by Toshiba $0002

; send command address

; send OFFSET command

this instance, is loaded into PIC register
W (MOVLW TXHOME). On entry to
SENDCMD (Listing 7), the value is
stored in a temporary register, simply
called TEMPA, although it could have
any other name if preferred.

The now-familiar CHECK3 status check
is made, after which the value stored in
TEMPA is recalled and output to PORTD,
the data input/output port, which is in its
default state and set for output.

Following a one cycle pause (NOP) for
stabilisation of the port, the command port,
PORTC, sets CE and WR low, leaving the
other bits high. Again a one cycle pause
occurs to allow the l.c.d. to accept the data,
and then CE and WR are taken high again,
followed by a return to the calling routine.
The l.c.d. will now have accepted the Text
Home address of $0000.

In routine GRAPHHOME (set the
Graphic Home address — not shown), the
process is identical to that for TEXT-
HOME, this time sending $0200 as the
address, and GRHOME as the actioning
command.

AREA SETTING

Text and Graphics area setting is then
performed respectively by routines
TEXTAREA (Listing 8 and Fig.14) and the
closely similar GRAPHAREA (not
shown).

The business of Text and Graphics areas
is somewhat subtle, and does not actually
refer to the area of the display that is visi-
ble. It refers to the areas set aside for Text
and Graphics data storage, and determines
the way in which data is ultimately shown
on screen. The area is specified by the
number of columns it contains. A column,

TEXTAREA

SETS TEXT AREA, SPECIFIED AS
COLUMN COUNT (LINE LENGTH)
(THIS L.C.D. ALWAYS HAS 8 LINES)

ENTRY TO
SET TEXT AREA
[CALL TEXTAREA]

SEND COMMAND ADDRESS
(COLUMN COUNT)
[CALL CMDADR]

v

I SEND COMMAND (TXAREA) I

[CALL SENDCMD]

(enoorsusroutiNE)

Fig.14. Flow chart for routine

TEXTAREA.

Everyday Practical Electronics, February 2001

as said earlier, is specified as being one
byte wide.

Later, a routine (AUTOWRITE) is
demonstrated that allows automatic incre-
menting of addresses when data is repeat-
edly written to the l.c.d.

When Autowrite is on, addresses are
incremented along the length of each allo-
cated screen line right up to the end of the
column count set through the relevant Area
command. At the end of line, the address is
incremented to the start of the next line.
The process continues for as many incre-
ments as required.

If the Text Area, for example, has been
set for 20 columns, the length of each line
is 20 columns long. This means that if you
start at the beginning of line 1 and write
data to the l.c.d. 20 times, line 1 will be
filled in incremental order. The 21st write,
though, will place the next data byte at the
start of line 2.

When the l.c.d. has been set for 6-bit
mode, the actual screen area seen is also 20
columns wide, therefore you can repeated-
ly write text to the l.c.d. 20 (columns) x 8
(lines) = 160 times and the actual screen
area will be filled with consecutive data
along all 20 character positions through all
eight text lines.

If, however, the data screen area has
been set to 40 columns, for example, the
same writing of 160 characters will have a
different visual effect.

Line 1 will be filled up to position 20
and the screen will show the characters as
before. The next 20 writes to the l.c.d.,
though, will be stored in the remaining 20
bytes of the column area allocated, which
is “off—screen”. These 20 bytes will not be
seen. On the 41st write to the 1.c.d., the first
byte of the next line will be written to,
which is once again “in-screen” and will
thus be visible on the display.

So, in order to completely fill the actu-
al screen area by writing consecutive
data bytes in autowrite mode, 320 writes
must be made, and only uneven—num-
bered groups of 20 characters (1, 3, 5
etc) will be seen. The evenly number
groups of 20 characters (2, 4, 6 etc) will
remain unseen.

The alternative, when in 40-column
mode, is to write 20 bytes of data to line 1,
reset the address for the start of line 2 and
write another 20 bytes, and so on for the
other visible lines.

Of course, using 40-column mode
allows addresses to be set for displaying
separately in the first 20 bytes of each line,
and another batch of data stored separately
and unseen into the last 20 bytes of each

Special Supplememnt

line. It is then possible to issue commands
which cause either the first block to be dis-
played, or the second. In other words, to
switch between l.c.d. blocks (pages) as
referred to earlier.

In their demo, however, Toshiba do not
illustrate this paging facility (although it is
illustrated later in the author’s own demo
program).

Toshiba simply set the Text Area for 20
columns width, as is performed via sub-
routine TEXTAREA in Listing 8. At the
start of the demo program, the author has
allocated variable COLUMN as the store
for the column width value, setting it for 20
($14).

In the TEXTAREA routine, the Text
Area is set into the same variables as
were used earlier in the address setting
routines, ADRMSB and ADRLSB. This
double-byte value ($0014 = 20 decimal)
is also sent to the l.c.d. via the same com-
mand address setting routine
(CMDADR), followed by the command
TXAREA being sent via the SENDCMD
routine. (To set the area for 40 columns
would require an address value of $0028
= 40 decimal to be sent.)

Routine GRAPHAREA (not shown) sets
the graphics area in the same fashion, also
for 20 columns, but with the actioning
command becoming GRAREA instead of
TXAREA.

MODE SETTING

There are two forms of mode defined by
Toshiba which, regrettably, they only
define as Mode and Display Mode (see
Table 4). The various forms will be demon-
strated more fully in the author’s demos.

Table 4

Mode itself is subdivided into the follow-
ing six sub-modes and codes (where X can
be 0 or 1):

OR mode

XOR mode

AND mode

Text Attribute mode
Internal CG ROM mode 1
External CG RAM mode 1

1
1
1
1

ooocooo
oooooo
oooooo
- O X X X X

00
01
11
00
X X
X X

Display Mode is also split into six sub-
modes and codes:

Display off

Text on, graphic off
Text off, graphic on
Text on, graphic on
Cursor on, blink off
Cursor on, blink on

—_
coooooo
coooooo
—_

Listing 12. CLRTXT - clear text screen. Listing 13. SCREENADR - send data read/write address to
CLRTXT: LCD.

CLRF ADRMSB ; set address ($0000) CALL CHECK3 ; read status for DAO/DA1 =3
CLRF ADRLSB MOVF ADRLSB,W ; send address LSB

CALL SCREENADR ; set screen write address CALL OUTDATA

MOVLW AWRON ; autowrite on CALL CHECK3 ; read status for DAO/DA1 =3
CALL SENDCMD ; send AWRON command MOVF ADRMSB,W ; send address MSB

MOVLW 8 ; number of lines to clear CALL OUTDATA

MOVWF LOOPC MOVLW ADPSET ; address pointer

CLR2: CALL SENDCMD ; send ADPSET command

MOVF COLUMN,W ; column length RETURN

MOVWF LOOPB

CLR3:

MOVLW 0 ; write 0 Listing 14. AUTOWRITE - autowrite data and increment
CALL AUTOWRITE ; autowrite and increment address.

DECFSZ LOOPB,F MOVWF TEMPA ; temp store value brought in on W
GOTO CLR3 CALL CHECKS ; read status for DA3 = 8

DECFSZ LOOPC,F MOVF TEMPA,W ; recall stored value

GOTO CLR2 CALL OUTDATA ; output data

MOVLW AWROFF ; autowrite off RETURN

CALL SENDCMD ; send AWROFF command

RETURN The source code is shown in Listing 12,

OoOOOke

OR mode is required in the Toshiba
demo. This allows data to be written to the
screen and ORed with any data already
existing at the same location. The routine
(SETMODE) is shown in Listing 9.

All that is involved is to send the com-
mand for OR mode (% 10000000 or $80 or
128 decimal) to the l.c.d. via the SEND-
CMD routine which was discussed earlier.

The setting of the Display Mode
(SETDISPLAY) has its routine shown in
Listing 10, in which Text is turned on, and
Graphics and the cursor are turned off.
Again the only action required is to send
the appropriate command (%10010100 or
$94 or 148 decimal) to the l.c.d. via
SENDCMD.

OFFSET SETTING

The Display Mode command, though, is
shown in Toshiba’s demo as following rou-
tine SETOFFSET, in which an offset regis-
ter value command is issued. Listing 11
shows what is required.

Toshiba’s explanation of the use of the
offset register is not fully intelligible. The
interpretation, however, appears to be that
the offset register is used to determine the
external (user-defined) character generator
RAM area.

The T6963C assigns this generator so
that when text character codes $80 to $FF
are written to the l.c.d. they are treated in
the same way as the “normal” text charac-
ters of the internal character generator
RAM, which are called through codes $00
to $7F. That is, you write only one value to
the screen to display the eight bytes of the
character held in the CG RAM.

This is in contrast to writing true
graphics data to the screen, in which eight
bytes of data have to be individually sent.

Toshiba go on to state that setting the off-
set register to a value of 2 sets the CG RAM
address to $1400, which then allows the
user—defined characters to be called by their
allocated code, between $80 and $FF. The
implications of attempting to use different
offset addresses have not been explored.

As with setting Home and Area values,
and referring to Listing 11, the offset value
is set into the 2-byte address as $0002 and
the CMDADR routine called. This is fol-
lowed by the OFFSET command being
issued via SENDCMD.

Special Supplememnt

The routine next in order of calling is
SETDISPLAY, as discussed in the previous
section.

INTO ACTION

This completes the basic initialisation of
the l.c.d. and it is now ready to have real data
sent to it for display on screen. The first data
to be written, though, clears the screen of any
previous data which might exist. At switch
on, for example, random data could automat-
ically (and unpredictably) be set into the
screen and other areas.

Routine CLRTXT is that which clears
the Text screen (there is no need to clear
the Graphics screen since this has been
deactivated in the Display Mode setting).

SENDLOOP
EXAMPLE OF SENDING LOOPED DATA

SENDS DATA TO AUTOWRITE
DATA TYPICALLY CALLED FROM TABLE
OR AS SPECIFIED VALUE

ENTRY TO SEND DATA
SEQUENCE, CALLING

LABEL AS REQUIRED

SEND SCREEN START
ADDRESS
[CALL SCREENADR]

v

SEND AUTOWRITE ON
COMMAND (AWRON)
[CALL SENDCMD]

GET DATA FROM
SPECIFIED SOURCE

SEND DATATO L.C.D.
WITH AUTO-INCREMENT
OF ADDRESS POINTER
[CALL AUTOWRITE]

HAS ALL DATA
BEEN SENT?

YES

SEND AUTOWRITE OFF
COMMAND (AWROFF)
[CALL SENDCMD]

END OF SUB-ROUTINE

Fig.15. Flow chart for
SENDLOOR

routine

see also flow chart SENDLOOP in
Fig.15.

The text address from which data is to be
cleared is first set to $0000. Because it is
data that is to be sent (as opposed to com-
mands as with the previous routines), an
Address Pointer command has to be sent as
well, ADPSET.

A separate routine (SCREENADR) has
been written that sets both the data address
and the Address Pointer command. It is
shown in Listing 13 and its flow chart is
identical to the CMDADR routine (Listing
6) except that the sending of ADPSET is
added at the end.

Following the call to SCREENADR
(from Listing 12), Autowrite is set on by
issuing the AWRON command. Next a
LOOPC value is allocated, holding the
number of lines to be cleared (eight). Then
a LOOPB value, which holds the line
length (COLUMN) involved, is set.

The subroutine CLR3 is then entered, in
which the value of zero is repeatedly writ-
ten to the l.c.d. for the duration of the nest-
ed decrementing loops.

At each write, the data is written to the
screen via routine AUTOWRITE (Listing
14), in which the screen address is auto-
matically incremented after each byte is
written. As discussed earlier, all address-
es are filled in order and in relation to the
column value previously set in the ini-
tialisation routines. This will be more
clearly seen later in the author’s Demo 9.

On each entry to AUTOWRITE, the
value brought in on W (in this instance
zero) is temporarily stored in variable
TEMPA. A status check is then called, but
not the CHECK3 routine seen previously.
This time, because we are in Autowrite
mode, it is CHECKS8 which is called, in
which the status register is checked for the
value of 8 (bit 3 high). The process is
almost identical to that used in CHECK3
and is not listed here.

On conclusion of the check, the data in
variable TEMPA is recalled and sent to the
l.c.d. via the usual OUTDATA routine.

SYMBOL CREATION

Toshiba now illustrate the creation of
characters (symbols) for storage in the
external (user-defined) CG RAM. The data
is specified in a table (EXTCG) that holds
the 64 byte values that make up the eight
component parts of the Japanese characters

Everyday Practical Electronics, February 2001

Listing 15. WRITECG - write to external (user-defined) creation of the sym-
character generator. bols — a screen start
WRITECG: address is specified
MOVLW $14 ; set CG RAM start address to and the symbols con-
MOVWF ADRMSB $1400 secutively written to
CLRF ADRLSB that and Subsequ.ent
CALL SCREENADR : send 2 bytes of address data + addresses. Accessing

address pointer tgble EXPRTI, rou-
MOVLW AWRON ; set autowrite on tine WTDD2 calls
CALL SENDCMD ; send AWRON command and writes the follow-
MOVLW 64 : set loop for 8 sets of 8 bytes (= 64) | ing data bytes to line
MOVWEF STORE 5 commencing at col-
CLRF LOOPB umn 8 (address value
EXCG: $6C=§x20+8=
MOVF LOOPB,W ; get loop value 108 decimal):
CALL EXTCG ; get data from table position set by RETLW $80

loop val RETLW $81
CALL AUTOWRITE ; autowrite and increment address RETLW $00
INCF LOOPB,F ; increment loop counter RETLW $00
DECFSZ STORE,F ; decrement counter, is it zero? RETLW $84
GOTO EXCG ; no, so repeat RETLW $85
MOVLW AWROFF ; yes, turn off autowrite . .
CALL SENDCMD ; send AWROFF command Note the mClUS_IOH
RETURN of zero bytes, specify-

ing blank characters

seen earlier in Photo 2. The routine is illus-
trated in Listing 15 (WRITECG - see also
flow chart SENDLOOP, Fig.15).

On entry to WRITECG, the CG RAM
address at which the data writing com-
mences is set at $1400. This is the value
referred to earlier when Offsets were dis-
cussed. The Autowrite process is used and
the address written to is automatically
incremented on each data write.

Apart from data being called from a
table, the routine is similar to that used for
clearing the text screen (in which the writ-
ten data had a value of 0).

The table is not illustrated here in full,
but the following shows the data Toshiba
specifies for creating the first user-defined
character (the first column is the command
and the second shows the value in binary):

RETLW $01 $01 = 00000001
RETLW $01 $01 = 00000001
RETLW $FF $FF=11111111
RETLW $01 $01 = 00000001
RETLW $3F $3F =00111111
RETLW $21 $21 = 00100001
RETLW $3F $3F=00111111
RETLW $21 $21 = 00100001

If you ignore the Os in the binary code,
concentrate on the 1s and look at Photo 2,
you will see that the 1s represent the active
pixels of the top left quadrant of the first
Japanese symbol.

The remaining aspects of the symbols
are similarly created.

For each block of eight data bytes read
from the table and stored in CG RAM, a
counter (internal to the T6963C) is auto-
matically incremented, from $80 up to,
in this table’s instance, $87. These eight
values are the addresses which are called
in order to display the user-generated
symbols on screen. In other words, to
display the first symbol discussed, a
value of $80 would be written to the
l.c.d.’s text screen, a value of $81 for the
second, etc.

Having been created, the symbols are
called in the order specified in another
table via routines WTDD2 and WTDD3.
Both are very similar to that in Listing 15,
relating to different addresses and calls to
other tables. They are not shown here. The
method is the same as that used during the

Everyday Practical Electronics, February 2001

(from the text charac-
ter CG ROM) to be written to the screen.
Routine WTDD3 behaves similarly,
accessing table EXPRT2 and writing data
to the sixth line, again starting at column 8.

The table—specified order of writing can
be changed if desired for other display cir-
cumstances. The data stored in the charac-
ter generation table (EXTCG) can also be
changed to suit the user’s needs. This point
will be amply illustrated in the author’s
later demos.

TEXT WRITING

Toshiba then go on to show how text
itself is written to the screen, using the
l.c.d’s own internal character generator
(CG ROM).

The following data bytes are accessed
from table TXPRT and written to generate
the word TOSHIBA, as shown in Photo 2.

RETLW $34 ;T
RETLW $00 ; blank
RETLW $2F ;0O
RETLW $00 ; blank
RETLW $33 ;S
RETLW $00 ; blank
RETLW $28 ; H
RETLW $00 ; blank
RETLW $29 ;1
RETLW $00 ; blank
RETLW $22 ;B

RETLW $00 : blank
RETLW $21 : A

For example, the data byte value of $34
specifies CG ROM location $34 at which
the character for letter T is stored (as
defined during the device’s manufacture),
and value $2F specifies letter O, and so on.
Again note the inclusion of zero bytes for
spaces.

Routine WTDD illustrates the text val-
ues being written to the screen. It is practi-
cally identical to the WTDD2 and WTDD3
routines except that a different data table
(TXPRT) is accessed. It is not listed here.

TOSHIBA TO AscCll

It is reiterated that the values for the CG
ROM characters held by the T6963C are
not the same numbers as specified by
ASCII codes. They are in fact ASCII val-
ues less 32. For instance, letter A in ASCII

Spedial Supplement |11

has a value of 65 decimal ($41). Deduct 32
from this and you obtain the value of 33
decimal ($21) for letter A in the Toshiba
code, as shown at the end of the table in the
previous section.

The author’s later demo will illustrate a
routine in which alphanumeric characters
can be specified in the normal PIC fashion
of enclosing the required ASCII character
in single quotes (e.g. "A’) and for the rou-
tine to then automatically translate its
ASCII value into a Toshiba value.

Following the completion of writing the
characters to the screen, Toshiba’s program
ends and no further action occurs.

You might care, though, to change some
of the data in Toshiba’s demo and see what
results occur. There will, however, be much
more opportunity for such things in the
author’s demos, which we move on to now.

AUTHOR’'S DEMOS

Before progressing, it is necessary to
load two programs into the PIC, the
author’s demo routines, for which the first
file is GEPE456.0BJ (source code
GEPE456.ASM). It too is written in
TASM.

Additionally, a text file needs to be
loaded into the PIC’s EEPROM data mem-
ory. The file is called DUCKO08.MSG (for
reasons that will become clear!) and is a
Message file of the type recognised by PIC
Toolkit Mk2 for sending to the PIC’s EEP-
ROM. Beware that other programmers may
not necessarily recognise the format (or be
capable of directly accessing the EEPROM
data memory).

DEMO CONTENT

The first matter examined is that of sub-
stituting different patterns for use as
user—generated CG RAM symbols. The
resulting display is shown in Photo 1,
earlier.

After the PIC setup procedure, the col-
umn width (COLUMN) is then set at 34
(see label GRAPHIC) and the l.c.d.
SETUP routine is called, in which all the
subroutines discussed previously are
actioned.

Two new routines, CLRGRAPH and
CLRCG, are also sent, in which the graph-
ics and user-defined CG RAM areas are
cleared. The routines are closely similar to
the CLRTXT routine and not listed here.

Then follow the author’s 12 demos in
which not only are routines covered that
Toshiba did not illustrate, but you are given
the opportunity to change various com-
mand codes and observe the results via
your demo board.

A switch monitoring routine is placed
within or between demos so that you can
keep the results on screen until the switch
(S1) is pressed to action the next demo.
Labels are given to each demo call so that
some demos can be remmed out, or jumps
made from one demo to another further
down. When Demo 12 has been finished
with, a return to Demo 1 is made.

DEMO 1
Diagram and words

In Demo 1, a set of data held in table
form (CGTABLE) is read and stored in
the user-defined CG RAM, in a similar
way to which Toshiba’s Japanese sym-
bols were created and shown. These sym-
bols represent the component parts of a

O0OOo

OO0z

Listing 16. Data for first character
($80) in table CGTABLE, representing
the “amplifier” top left, plus first slope
down.

RETLW %10000000

RETLW %11000000

RETLW %10100000

RETLW %10010000

RETLW %10001000

RETLW %10000100

RETLW %10000010

RETLW %10000001

simple electronic circuit, as shown earli-
er in Photo 1.

There are 15 characters created, each
comprising eight bytes, making a total of
120 bytes. They are stored in consecutive
CG RAM locations which are called with
value codes of $80 to $8E (whereas
Toshiba’s occupied calling locations $80 to
$87). The subroutine SETCG is used for
this process. The routine is closely similar
to that in Listing 15 and is not shown here.
The first part of the symbol creation table
is shown in Listing 16.

Unlike Toshiba’s demo, the calling table
(AMPLIFIER) does not insert blank charac-
ter cells. Instead the data is written by sev-
eral subroutines so that it is placed at the
exact screen addresses required.

For example, the routine labelled
CIRCUIT specifies that the location for the
first symbol is to be placed at Column 5
Line 1, in which both lines and columns
now start at zero (they started at 1 in
Toshiba’s demo).

The column required is specified by the
value loaded into W. The selection of Line
1 is then specified by the call to LINEI.
The LINE call is one of several in which
the line number is specified by the called
address, i.e. a call to LINE2 would specify
that Line 2 was the required line (see the
source code for the listing}.

Calculation of the screen address at which
the first character is to be placed is in relation
to the line number called, the number of
columns specified for the display (column
width), and with the column value as set into
W prior to the call added to the total. Readers
will no doubt be able to write a more compact
routine than is used in the demo.

The routine which reads the table and
sends data to screen is SHOWCG (not list-
ed here but similar to Listing 15). Part of
the listing for table AMPLIFIER is shown
in Listing 17.

Note that the screen displays some small
text characters as part of the circuit dia-
gram. These have also been created as
user-defined CG RAM symbols. The l.c.d.
does not keep small characters as part of its
fixed text symbol library.

Listing 17. First part of AMPLIFIER
table.

RETLW $80 ; amp top left
RETLW $83 ; amp input
RETLW $86 ; cap top
RETLW $83 ; amp input
RETLW $83 ; amp input
RETLW $81 ; amp left
RETLW $82 ; amp slope down
RETLW $83 ; amp output
RETLW $86 ; cap top

RETLW $83 ; amp output
RETLW $8B ; word IN

The normal size letters shown on the
screen are created using the l.c.d.’s own
internal text generator. The letters required
are specified in a table (TABLEl) and
called in order, with the l.c.d. screen
address to which they are written being
changed when needed.

The address setting and table calling
routines (WORDS and SHWTXT) are
similar to those used for sending the
circuit diagram symbols to the screen
and not shown here. Part of the text-
holding TABLE1 called is shown in
Listing 18.

Listing 18. First part of TABLE].
RETLW ‘G’
RETLW ‘R’
RETLW ‘A’
RETLW ‘P’
RETLW ‘H’
RETLW ‘T’
RETLW ‘C’
RETLW * *

In routine SHWTXT, after TABLE1 has
been called, 224 is added to the returned
value. This is the equivalent of subtracting
32 from the ASCII value held in the table,
so converting it to the Toshiba code value
(as discussed earlier).

Exercise 1.1.
Experiment with changing the text con-
tent sent to the screen, and its positioning.

Exercise 1.2

Do the same with the graphics display,
perhaps even completely creating your
own replacement drawing.

DEMO 2
Bit setting and clearing

Pressing the switch now starts the sec-
ond demo, which illustrates how individual
pixel bits on the screen can be set or
cleared (see Photo 4).

It uses the same illustration as in Demo 1
but to the right of it now draws a square and
then clears it, followed by drawing it again,
indefinitely. At the centre of the square a sin-
gle pixel is shown constantly set.

The action uses a delay loop between the
setting or clearing of each pixel so that it is
in semi-slow motion.

For the first time in any of the demos so
far, the Graphics screen itself is used for
this action, superimposed on the circuit
diagram, which you will recall makes use
of the Text screen.

Photo 4. The square being drawn in
Demo 2.

Spedcial Supplememnt

The first part of the demo routine is
shown in Listing 19.

On entry to Demo 2, the first commands
ensure that the display is placed on screen
page 1 (more on this later). Both Text and
Graphics screens are then activated by the
commands:

MOVLW %10011100 ; text & graphic
on, cursor & blink off
CALL SENDCMD ; send command

Until the display mode is changed, any-
thing written to the Text or Graphic screens
will be shown. Hence you continue to see
the text-generated characters on the Text
screen, plus the graphics-generated square
data being drawn on the Graphics screen.

The Graphics screen is made up of 64
horizontal lines (raster lines) each of which
contains the same number of columns as
previously set during the initialisation. The
address of any byte on screen is in relation
to the line number and the column number.
The pixel to be manipulated is one of the
eight bits within the selected byte.

Table 5. Pixel bit setting codes

Code Function
11110XXX Bit Reset
11111XXX Bit Set
1111X000 Bit 0 (LSB)
1111X001 Bit 1
1111X010 Bit 2
1111X011 Bit 3
1111X100 Bit 4
1111X101 Bit 5
1111X110 Bit 6
1111X111 Bit 7 (MSB)

To set a screen address, subroutine
GLINE (graphics line — not shown) is told
which column is required and on which
line. It then calculates the address. For
example, shortly after entry to Demo 2,
column 12 line 23 is the required address.
As shown in Listing 19, the column value
(12) is loaded into the address LSB and W
is then loaded with the line value (23).
GLINE is then called.

GLINE performs a rudimentary multi-
plication routine, multiplying the line
number by the number of columns speci-
fied in the initialisation. The actual col-
umn number required is then added to
the total.

The selected pixel is turned on or off in
relation to the value of bit 3 of a command
byte (BITVAL) which is sent via a specific
bit writing routine, BITWRITE. Bit 3 = 0
causes the screen pixel bit to be reset
(cleared), and bit 3 = 1 sets the bit (turns it
on). The bit itself is specified by the 3-bit
code in bits O to 2.

Table 5 illustrates the logic. Listing 19
shows part of the routine, performing the
setting of the square’s single central bit.

In subroutine BITWRITE, the screen
address is set from the calculated address
value, and then the BITVAL byte is writ-
ten to the screen, but as a command
rather than actual screen data. See
Listing 20.

In the square drawing routines, manip-
ulation of the pixel-controlling bit within
the byte at the selected address is done
by an 8-value (0 to 7) incrementing
counter (STOREI). The bit to be set or
cleared is stated by the counter value.

Everyday Practical Electronics, February 2001

L. . . .) . Listing 20. BITWRITE — write single bit routine.

Listing 19. First part of DEMO?2 bit setting/clearing routine. MOVWEF BITVAL : temp store val brought in on W
; set single centre bit CALL SCREENADR ; set screen write address
MOVLW 12 ; set column number MOVF BITVAL,W
MOVWF ADRLSB) CALL SENDCMD ; send BITVAL command
MOVLW 23 ; set graph line RETURN
CALL GLINE ; multiply by line length to get address
MOVLW %]11111000 ; set bit 0
CALL BITWRITE Listing 21. DEMO3 - fill selected graphics area with reverse
MOVLW %11111000 ; bits 0-2 indicate bit affected attribute value, first section, for top line.
MOVWF STORE1 ; bit 3 high = set, low = clear DEMO3:
MOVLW 2 ; set graphic address ($02xx)
MOVWF ADRMSB
. . MOVLW 0 ; set column

There are several sub-routines within The chosen com- CALL LINEO - set cell number for line stated
the square drawing demo (not shown mand (%00000101 in | Nvryviw 16 . character quantity to be affected
here), which respectively cause the this instance) is writ- | MOVWF LOOPC ’
apparent movement of the square’s ten to a temporary | MOVLW %00000101 - attribute reverse
perimeter. variable, ~ ATTRIB, |MiOVWE ATTRIB ’

During upwards or downwards drawing, and then subroutine | -a71[SETATTR
the selected bit value remains constant. It is SETATTR is called.

the address of the line/column which is
changed, adding or subtracting the column
width value depending on the direction of
“travel”.

In the full source code, note how bit 3 is
toggled high or low at the end of each
drawing of the square, so alternating
between bit setting and bit clearing.

Exercise 2.1.
Set the display mode so that only the
square being drawn is displayed.

Exercise 2.2.

Change the screen address at which the
square is drawn, together with the centre
active pixel.

Exercise 2.3.

Rewrite the square drawing program so
that the drawing appears to take place in an
anticlockwise fashion, instead of moving
clockwise.

Exercise 2.4.
Is your logical thinking up to drawing a
circle instead of a square?

Having finished Exercises 2.1 to 2.4,
reinstate the Display Mode so that the cir-
cuit diagram and bit setting displays are
both seen (text and graphics on).

Pressing the switch starts Demo 3.

DEMO 3
Text highlighting

Demo 3 illustrates text highlighting and
flashing (see Photo 5). Part of the control-
ling routine is shown in Listing 21.

The action taken in Demo 3 is to high-
light the words at the top of the screen
(GRAPHIC LCD DEMO) by inverting
them, causing clear letters to be shown on
a dark background. Similarly with the
other captions (EPE SHOWS YOU HOW),
but with them flashing on and off within
their dark background.

The control bytes which are responsible
for these actions are written to the graphics
screen area, consequently any graphics
within the graphics screen at the affected
locations are overwritten.

Referring to Table 6, the commands for
inverting text characters against the back-
ground are:

MOVLW %00000101 ; attribute reverse

command
MOVWF ATTRIB ; store it
CALL SETATTR ; call set attribute
routine

Everyday Practical Electronics, February 2001

The routine is closely
similar to other screen writing routines and
is not listed here.

Table 6. Screen attribute codes

Code Function

XXXX0000 Normal display
XXXX0101 Reverse display
XXXX0011 Inhibit display
XXXX1000 Blink of normal display
XXXX1101 Blink of reverse display
XXXX1011 Blink of inhibit display

Autowrite mode is used in SETATTR.
The required address is first set, Autowrite
is turned on and then a loop repeatedly
sends the value held in ATTRIB to the
required graphics screen area.

Any text character superimposed on that
area via the text screen is affected by the
ATTRIB value “beneath” it, in this case
inverting it.

The blink-reverse command is
%00001101, and is sent to the graphics
screen area in the same way, having speci-
fied the required address and number of
bytes involved:

MOVLW %00001101
MOVWF ATTRIB
CALL SETATTR

When all the attribute values have been
sent to the required locations, the text has to
be set for Attribute Mode, as is performed in
Listing 22. The essential commands are:

; blink reverse

MOVLW %10000100 ; text attribute
mode
CALL SENDCMD ; send command

The following commands are also sent
to ensure that the correct screen mode is set
following any changes you may have made
in the previous exercises:

MOVLW %10011100 ; text & graphic
on, cursor &
blink off

CALL SENDCMD ; send command

Exercise 3.1.
Referring to the Attribute table (Table

Photo 5. Screen as seen during part of
Demo 3.

DEMO 4
Cursor Setting

Demo 4 illustrates how the cursor can be
used. The basic routine is in Listing 23.

First it is necessary to specify the screen
address at which the cursor is to be posi-
tioned, and issue the commands generated
in subroutine CSRADR (see Listing 24):

CALL CMDADR ; send command
address

MOVLW CSRPOS ; cursor position
command

CALL SENDCMD ; send command

Unlike other address setting calls, the
cursor position is specified by the actual
display screen line and column position.
Thus to set the cursor for line 3 column
15, it is these two values which are sent
as the address, rather than having the
position calculated in relation to the first
screen byte location and the column
width set (as you saw occurring for plac-
ing text on screen).

Thus, for this line 3 column 15 example,
the column position (15) is placed into the
address LSB, and the line number (3)

6), experiment with
using the other high-
light options avail-
able. Also try putting
the commands at
other places on screen
and observe what
effect is produced.

CALL SENDCMD

CALL SENDCMD
RETURN

Listing 22. Final section of attribute setting routine, setting
for Text Attribute mode.
MOVLW %10000100

MOVLW %10011100

; text attribute mode

; send command

; text & graphic on, cursor & blink off
; send command

Spedial Supplemaemnt

s|]O0O0

OO0

Listing 24. CSRADR - Cursor position (address) setting.

; send command address
; cursor position command
; send command

Listing 23. DEMO4 — Cursor setting.

DEMO4: CSR:

MOVLW %10010111 ; text on, graphic off, cursor & blink on CALL CMDADR

CALL SENDCMD ; send command MOVLW CSRPOS

; set cursor position + type CALL SENDCMD

MOVLW 15 ; set column RETURN

MOVWF ADRLSB

MOVLW 3 ; set line

MOVWF ADRMSB !

CALL CSRADR Fig.16.

CALL CSRTYP ; set type (specified in sub-routine) CSRTYP:

RETURN ; (from 1 to 8 lines high) MOVLW %10100111
CALL SENDCMD
RETURN

placed into the MSB, following which the
call to routine CSRADR is made, where
the address is actioned:

MOVLW 15 ; set column
MOVWF ADRLSB

MOVLW 3 ; set line
MOVWF ADRMSB

CALL CSRADR

Cursors having eight different heights
can be created, as illustrated in Fig.16.
Listing 25 shows the command
(%10100111) which generated the full 8-
line cursor, “line” in this instance meaning
a graphics line (of which there are 64, as
stated earlier).

The cursor type command is issued in
routine CSRTYP (Listing 25), which on
this occasion is for an 8-line cursor.

As you will see from Fig.16, the cursor
type is selected logically, with bits O to 2
holding the binary number whose decimal
equivalent is the cursor line-count (height)
value.

STATIC CURSOR

It is important to note that the cursor
position remains in the same screen posi-
tion to which it has been allocated. There is
no facility for it be automatically incre-
mented in position when writing text to the
screen, unlike with standard alphanumeric
l.c.d.s, where the cursor can be set to be
“actively mobile”.

You will also see from Demo 5, where
switching between screen pages is
performed, that the cursor position is
always related to the actual location on the
visible screen, rather than to the screen
memory locations previously discussed.

When changing the cursor position on
screen, it is only necessary to specify the
address at which it is to be placed. Once
the cursor type has been specified and
actioned (via CSRTYP), it is not necessary
to specify it again, unless you wish to
change the type.

Note that the cursor can be set to flash or
to remain static. The Display option con-
trols its action (see Table 4).

On entry to Demo 4, the display mode is
set for text on, graphic off, cursor and blink
on, using the commands:

MOVLW %10010111 ; text on, graphic
off, cursor &
blink on

CALL SENDCMD ; send command

Note that with the graphic screen now
turned off, the attribute commands
behind the top text line no longer cause
the text to be inverted. However, the
blinking text line continues to blink
because the text attribute mode has not
been cancelled.

Spedcial Supplememnt

Listing 25. CSRTYPE - set cursor type. See also flow chart

; 8-line
; send command

Exercise 4.1.

Experiment with different addresses for
the cursor to be placed, and also with the
cursor type.

Exercise 4.2.

How would you stop the flashing of the
bottom text lines, returning them to normal
text display mode?

CSRTYP

SETS CURSOR TYPE AS SELECTED
HERE BY USER - OPTIONS
%10100000 1-LINE
%10100001 2-LINE
%10100010 3-LINE
%10100011 4-LINE
%10100100 5-LINE
%10100101 6-LINE
%10100110 7-LINE
%10100111 8-LINE

ENTRY TO
SET CURSOR TYPE
[CALL CSRTYP]

SEND COMMAND (IN W)
[CALL SENDCMD]

END OF SUB-ROUTINE

Fig.16. Flow chart for cursor type set-
ting routine plus the cursor codes.

DEMO 5
Panning between pages

In Demo 5 panning between screen
pages is illustrated. The principle of
l.c.d. pages was discussed when describ-
ing how the column width setting
determined how data was written to the
display screen.

You would not have been aware of it at
the time, but when writing text to the
screen in Demo 1, text was also written
into the region which we can call Page 2.
That text simply says “THIS IS
PAGE 2”.

Panning occurs between the main page
(page 1) and page 2. It has been slowed by
the inclusion of a delay routine, but this
can be omitted (or extended) if preferred in
other applications. See the full source code
for program details. It is based upon the
TEXTHOME routine in Listing 5.

The Text Home address is initially set
for page 1, line 1 column 1. A loop is
then entered in which the address is
repeatedly incremented, causing the dis-
play to shift by one column each time
from right to left, each shift followed by
a short pause.

As the display shifts left, so page 2 will
gradually become revealed, with the pro-
gressive disappearance of page 1.

At the end of the preset loop count, the
shifting is reversed so that it shifts from left
to right, to again reveal page 1, with the
disappearance of page 2.

The process repeats until such time that
you press the switch to enter Demo 6.

If at the end of Demo 4 you had left
the cursor and lower text lines flashing,
you will see that the cursor does not shift
in position while the panning occurs. Nor
will the screen area which contains the
instructions for text flashing. As the
screen pans, the text beneath the flashing
commands will shift away from those
commands and cease to flash in the posi-
tions beyond them.

Note that the l.c.d.’s nature dictates that
changes to the screen images do not
instantly take effect. There is a short time
that it takes for the display’s liquid crystals
to realign themselves following any
change. This results in a brief “ghost”
image of the display as it was prior to being
shifted. The effect is especially noticeable
in situations such as panning or switching
between pages.

Exercise 5.1.
Experiment with changing the rate at
which the screen pans.

Exercise 5.2.

Increase the column width setting and
write text of your own invention to the area
which can be regarded as page 3. Then set
the panning loop lengths so that page 3 is
revealed following page 2.

Exercise 5.3.
How many pages can you create, write
to and pan through?

Exercise 5.4.
What happens if you cause the graphic
screen to pan rather than the text screen?

Exercise 5.5.
What happens if you pan both screens?
Restore the original column width and
panning loops to the original values before
progressing to Demo 6.

DEMO 6

Switching between pages
Demo 6 is a variant of the action per-

formed in Demo 5. Here the pages are

switched between, rather than panned.

Exercise 6.1.

Perform the same experiments as in the
exercises for Demo 5. Again ensure that the
originally settings exist before you enter
Demo 7.

Everyday Practical Electronics, February 2001

DEMO 7

AND, OR, XOR

In Demo 7 (listing not shown), the AND,
OR and XOR modes (Table 4) are demon-
strated. Press the switch to enter the demo.

On entry, a return is made to page 1 with
both Text and Graphics screens active. The
previous text characters will be seen, plus
probably the residual state of the square
drawing demo on the graphics screen. The
Text Attribute mode is also cleared.
Initially, the OR display mode is active.
These actions take place in the first few
subroutines of Demo 7.

In the principal demo routine, an area of
the graphics screen has a pattern written to
it, the area of which spans part of the “cir-
cuit diagram”. The process is similar to
that in flow chart SENDLOOP.

The pattern is created by writing the
binary value 10101010 to alternate lines
within the area, and 01010101 to the other
alternate lines.

This pattern is written as an Attribute,
moving it into the variable ATTRIB and
then writing this to the l.c.d. via the
SETATTR routine which was demonstrat-
ed earlier. The key lines are as follows:

MOVLW %10101010 ; fill graphic with

val shown
BTFSS LOOPD,0
MOVLW %01010101 ; fill graphic with
val shown
MOVWF ATTRIB
CALL SETATTR ; send value

When the pattern has been written to the
designated area, the choice of whether it is
ANDed, ORed or XORed with the text is
available. As set, XOR mode is chosen.
The choice of mode is actioned by sending
that value as a command to the 1.c.d. via the
SENDCMD routine.

Following the sending of the selected
command, the choice of which text and
graphics screens are active is offered (refer
back to Table 7). In the demo, the Text and
Graphics On mode is selected, and the cho-
sen value sent as a command via the
SENDCMD routine.

Exercise 7.1

Experiment with choosing different
options from the modes offered and note
the results.

DEMO 8

Quackery!

Now we come to a complex example of
creating a moving picture via the Graphics
screen. Press the switch to enter Demo 8,
and observe a bit of quackery (see
Photo 6)!

You will see two creatures which might
just be confused by some as being ducks!
On the assumption that they might be, one
of them opens its beak periodically and the
word QUACK appears briefly on screen.

The ducks are also seen to be very
sedately swimming slowly to the right.
As the rightmost exits the screen area,
another duck begins to appear on the left.
A pattern of water is placed at the bottom
of the screen, and a text message is at the
top.

The water and text are created and dis-
played by the program in the manner dis-
cussed in previous routines. The water is a

Everyday Practical Electronics, February 2001

Photo 6. The birds sedately “swim”
across the screen in Demo 8.

pattern created by writing a series of
01010101 bytes to the graphics screen. The
text is held in a table.

What is interesting, though, is that the
data for the ducks themselves is not actu-
ally programmed into the source code,
but has been programmed into the PIC’s
EEPROM data memory from a pattern
held in a separate text file on disk
(DUCKO08.MSG).

This is the data you were asked to send
to the PIC as part of its programming for
the author’s demos. Other data could be
written instead and similarly downloaded
to the EEPROM. The .MSG file can be
read (and amended) through a normal
text editor.

SIMPLE IN PRINCIPLE

A really complex set of programming
commands is involved in creating this
screen, and there is insufficient room to
show it. The principles are simple, though:

First the water is displayed, plus the top
line text. The ducks are identical and the
pattern for just one is held in the EEPROM,
where it is stored as a set of values for writ-
ing to the character generator (user-
defined) RAM. The pattern is retrieved and
written to the CG RAM. Detail of part of
the bird’s beak is also retrieved and stored
as a separate CG RAM byte.

The data, except for the extra beak
detail, is then written twice to the graphics
screen, so that two ducks are shown.

The Graphics screen itself is now repeat-
edly read, line by line within the “Duck
zone”’, and the bytes within each line are
shifted (rotated) right, so that the LS bit of
one byte shifts into the Carry register,
which is then shifted into the next byte as
the MS bit, and so on for all 16 bytes of
each line.

The final shift right causes the final LS
bit to be shifted into a holding register,
from where in the next cycle it is shifted
into the first byte of the line as the MS bit.

The same is performed for each of the 28
graphics lines involved. The effect is that
of a line of ducks slowly swimming across
the screen.

On every eighth cycle of shifting lines to
the right, the separate beak section is called
into action and placed so that one bird
appears to have its beak open. Coincident
with this, the word QUACK is written to
the screen. A short pause follows in which
no shifting occurs. Then the extra beak sec-
tion is removed, and blanks written in
place of QUACK.

Special Supplememnt |15

Various experimental routines were
written to see which method could create
the fastest swimming effect. To be honest,
the author was a bit disappointed that he
could not get the ducks moving faster, but
he still finds the display amusing!

It was decided, incidentally, not to use
the panning technique illustrated earlier.
This only shifts the screen by complete
bytes. The ducks, though, are shifted by
individual pixels, creating a smoother
effect.

SCREEN READING

Whilst the full program cannot be
included on these pages, it is pertinent to
describe some of it in greater detail.

Each screen byte is read, shifted right to
bring in the previous Carry from the left as
the MS bit and to shift out the current LS
bit into the Carry. The byte is then restored
back on screen.

This occurs one line at a time, with a
final “overflow” byte holding the Carry
status of each line concluded, and which is
shifted in from the left at the start of the
reading procedure for the same line on the
next batch round.

The routines involved, with two excep-
tions, are variants on those already discussed.
The first exception is the EEPROM data read
routine. There is nothing special about this
that is worthy of discussion now. It was
described in principle in the author’s PIC
Tutorial of March-May ’98, again in the
PICTutor CD ROM, and then expanded upon
as a modification to suit PIC16F87x use, in
EPE Oct ’99 (Mini PIC Tutorial).

The other exception that is appropriate
here, is the reading from the screen routine,
DATAREAD, as shown in Flow Chart
Fig.17.

In the full source code the command that
instructs the l.c.d. to make a screen read is
defined in PEEK, and it is this value which
is written as the operative command.

Two sets of status checking are required
for screen reads. CHECKG® is the first in
which a wait occurs until status bit 6 is low
— not high as in other status checks.

Then follows a CHECK3 status check,
as has previously been discussed.
However, in order to make the reading rou-
tine more efficient, neither check is made
by calling the labelled subroutines. It is
made in-situ within the read routine itself.

On conclusion of the CHECK3 equiva-
lent, CD is taken low, and the byte present-
ed by the l.c.d. to PORTD is read. It is this
value which the l.c.d. has read from the
addressed screen byte. The byte is tem-
porarily stored in RDBYTE, the routine
ended, and a return made to the calling rou-
tine. Now RDBYTE can be suitably dealt
with as required.

There are no exercises suggested for
Demo 8 (or the remainder yet to come).
Think up something for yourself!

When you feel you are on the verge of
“quacking-up” watching those darned
ducks interminably crossing the screen (no,
there’s no shooting gallery program
offered!), press the switch to enter Demo 9.

DEMO 9

Text Character Set

All that Demo 9 does is to display the
full in-built text character set in order
across the screen (see Fig.4 earlier).

O0OoOo

OO

DATAREAD

READS DATA BACK FROM L.C.D. ADDRESS

ENTRY TO
DATA READ
[CALL DATAREAD]

SEND READ COMMAND

[CALL SENDCMD]

SET DATA PORT (D)
FOR INPUT

SET CONTROL PORT (C)
CD CE RD WR
1.0 0 1

STATUS
IS BIT 6 HIGH?

SET CONTROL PORT (C)
CD CE RD WR
0 0 0 1

v

READ DATA FROM
DATA PORT (D)
AND STORE IN RDBYTE

v

SET CONTROL PORT (C)
CD CE RD WR
1111

END OF SUB-ROUTINE

Fig.17. Flow chart for DATAREAD
routine.

DEMO 10
Graphics Set Used

Pressing the switch again enters Demo
10. This displays all the user-defined sym-
bols that have been created and stored in
the CG RAM. It includes those from the
circuit diagram (those on the first line) and
downloaded from the EEPROM as the
duck detail.

Imagination is needed to interpret which
symbol is which part of the demos. The
beak, perhaps, is obvious as the penulti-
mate symbol. So too are small sub-captions
from the circuit diagram.

DEMO 11
Waveform (1)

Pressing the switch again to enter Demo
11 shows the results of the author’s
preparatory experiments with drawing
waveforms on screen, with an ultimate
view to designing the forthcoming PIC G-
Scope.

In this example, the waveform is drawn
horizontally and is seen shifting from top
to bottom.

Note how the text is placed on the
screen with the waveform shifting
beneath it. A delay routine is included in
the program and you can change the rate
of shift. The number of waveforms
seen can also be changed (determined by
the rate of incrementing variable
COUNT).

Special Supplement

The routine shows another instance of
writing individual bits to the screen, mak-
ing use of a look-up table.

Whilst it is a complex program, ensuring
that the waveform is not only created, but
also erased on the next cycle, there is noth-
ing special about its routines in terms of
using the l.c.d.

DEMO 12
Waveform (2)

Demo 12 is similar to Demo 11, except
that the waveform is created vertically in
the traditional scope style, shifting hori-
zontally (see Photo 6). It too was an exper-
iment prior to designing the PIC G-Scope.
Do as you like with it.

Photo 6. Waveform generated in
Demo 12.

REPETITION

Pressing the switch again returns you to
Demo 1.

When experimenting with the exercise
suggestions, it is probably best if you rem-
out the calls to those demos you do not
need to see at that time, placing a semi-
colon in front of the respective CALL
commands.

For each change that you make to the
program, it must be reassembled from the
source code to a format suitable for down-
loading (sending) to the PIC. The program
is written in TASM, which requires it to be
assembled as a .OBJ file for sending to the
PIC via a programming tool such as PIC
Toolkit Mk2.

If you prefer to work with the MPASM
dialect, Toolkit can translate from TASM to
MPASM. In which case any re—assembly
would need to be to a .HEX file if you are
then using an MPASM-type programmer.

‘When writing your own future programs
you will find that many of the author’s
routines are ideally suited to use as library
routines. You will also spot many ways in
which you can deviate from the exactness
of the routines while still retaining their
essence.

Additionally, you will find that some
routines can be “tightened—up’’ to become
more efficient — changing bits, for exam-
ple, instead of complete bytes. The LINE
and GLINE commands, as another exam-
ple, deserve attention to make them more
efficiently programmed.

WINDING UP

Without the guidance of Toshiba’s demo
program, the author would have found it
extremely difficult to get to know the oper-
ation of the T6963C I.c.d. controller.

It has to be said, though, that it would
have been appreciated had Toshiba’s exam-
ples gone further. There is much that was
left to be discovered by logical deduction
and by trial and error. Much of it has been
achieved, as the author’s demos illustrate.
Nonetheless, there are still some questions
unanswered, possibly more than are imme-
diately apparent.

Should readers investigate beyond the
regions explored through the author’s
demos, they might care to share their find-
ings with others, submitting them for pos-
sible inclusion in Readout. You might even
design a circuit based on a graphics l.c.d.
that you would like to submit for possible
inclusion as an EPE constructional project.

Give Editor Mike Kenward a call if you
have an idea which you think might inter-
est us and other readers.

DOWNLOAD SITES

The Toshiba T6963C data sheet was
downloaded from www.toshiba.com/taec/
components/Datasheet/T6963CDS.PDF.
Note that the device is designed to control
many different l.c.d. formats and some of
the data is not relevant to the PG12864.

The Powertip data sheet is not available
for download except by authorised
Powertip agents (besides which, the author
found it to be unhelpful and in some cases
grossly inaccurate). Powertip’s site is at
www.powertip.com.tw.

The RS data sheet (RS 298.4613), which
is also available from Electromail, was also
found to be unhelpful (and of little rele-
vance to the Powertip PG12864 as a sepa-
rate entity).

Another graphics l.c.d. site is at
www.varitronix.com. Some of their l.c.d.s
are also controlled by the Toshiba T6963C,
but adequate data sheets could not be
located.

Kent Displays Inc of the USA have a site
at www.kentdisplays.com which is inter-
esting for its l.c.d.s that retain their image
even after power has been switched off.
They do not use the T6963C controller,
however.

Microchip’s site, from where a
PIC16F877 data sheet can be downloaded,
is at www.microchip.com.

The EPE web site, from where the soft-
ware for this demo can be downloaded
(and where lots of other matters of interest
exist!), is at www.epemag.wimborne.
co.uk.

Finally,

if you are interested in

Partridges (see earlier!) try doing a search
on Perdix, via www.google.com. Google
is an excellent search engine anyway and is
well worth adding to your list of favourite
sites. Thanks to friend Alan Winstanley for
having told us about it!]

Everyday Practical Electronics, February 2001

Copyright © 2001, Wimborne Publishing Ltd
(Allen House, East Borough, Wimborne, Dorset, BH21 1PF, UK)

and Maxfield & Montrose Interactive Inc.,
(PO Box 857, Madison, Alabama 35758, USA)

All rights reserved.

WARNING!

The materials and works contained within EPE Online — which are made
available by Wimborne Publishing Ltd and Maxfield & Montrose Interactive Inc —
are copyrighted. You are permitted to make a backup copy of the downloaded file
and one (1) hard copy of such materials and works for your personal use.
International copyright laws, however, prohibit any further copying or

reproduction of such materials and works, or any republication of any kind.

Maxfield & Montrose Interactive Inc and Wimborne Publishing Ltd have used
their best efforts in preparing these materials and works. However, Maxfield &
Montrose Interactive Inc and Wimborne Publishing Ltd make no warranties of
any kind, expressed or implied, with regard to the documentation or data
contained herein, and specifically disclaim, without limitation, any implied
warranties of merchantability and fithess for a particular purpose.

Because of possible variances in the quality and condition of materials and
workmanship used by readers, EPE Online, its publishers and agents disclaim
any responsibility for the safe and proper functioning of reader-constructed
projects based on or from information published in these materials and works.
In no event shall Maxfield & Montrose Interactive Inc or Wimborne Publishing Ltd
be responsible or liable for any loss of profit or any other commercial damages,
including but not limited to special, incidental, consequential, or any other
damages in connection with or arising out of furnishing, performance, or use of
these materials and works.

	Copyright and Disclaimer
	Introduction
	Data Denial
	Toshiba T6963C
	Powertip PG12864
	Demo Circuit (Components)
	Printed Circuit Board
	Construction
	PIC Programming
	Display Structure
	Coming Next
	Control Matters
	Control Lines
	PIC Port Settings
	Status Checks
	Data Write
	Toshiba's Demo
	Fixed Variables
	Demo Subroutines
	Area Setting
	Mode Setting
	Offset Setting
	Into Action
	Symbol Creation
	Text Writing
	Toshiba to ASCII
	Author's Dreams
	Demo Content
	Demo 1 - Diagram and words
	Demo 2 - Bit setting and clearing
	Demo 3 - Text highlighting
	Demo 4 - Cursor setting
	Static Cursor
	Demo 5 - Panning between pages
	Demo 6 - Switching between pages
	Demo 7 - AND, OR, XOR
	Demo 8 - Quackery!
	Simple in principle
	Screen Reading
	Demo 9 - Text character set
	Demo 10 - Graphics set used
	Demo 11 - Waveform (1)
	Demo 12 - Waveform (2)
	Repetition

	Winding up
	Download sites

