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Abstract— Recent times have given rise to interesting discussions 
about the necessary and sufficient criteria for steady state 
oscillations of electronic circuits. The aim of this paper is to point 
out that the Barkhausen criterion (Bc), while a necessary 
condition for oscillations, but not a sufficient one, could be 
supplemented with another necessary condition. Here, we would 
like to take account of a feature of phase vs. frequency 
characteristics of linear feedback networks for oscillators. We 
analyze Twin-T (DT) oscillator and modified Wien (MW) 
oscillator according to [6], [7], from the point of linear circuit 
theory by means of open loop characteristic equations and root-
locus diagrams for some parameters values where derivatives of 
the phase vs. frequency open loop feedback systems can be 
positive or negative, (in the vicinity of the frequencies where the 
Bc is fulfilled). Characteristic equations of both oscillators and 
their root-locus diagrams as a function of gain of ideal linear 
amplifier (AMP) are compared and estimated. For nonlinear 
amplifier, nonlinear ordinary differential equations have been 
solved and compared with the assistance of MATLAB, MathCAD 
and MICRO-CAP (MC10). In addition, we present experimental 
investigation of the impact of phase vs. frequency characteristic 
properties on steady state oscillation existence in feedback 
oscillators in other article as well [15]. All obtained results have 
confirmed that feedback systems with positive derivatives of 
phase vs. frequency characteristics (in the vicinity of frequencies 
where Bc is fulfilled) are incapable of producing steady state 
oscillations. So we can say that the requirement for negative 
derivatives of phase vs. frequency characteristic of the feedback 
network could be understood as a necessary condition for 
oscillations existence. It is a novel look at the role of this 
characteristic for steady state oscillations existence. 

Keywords—Barkhausen criterion; oscillators; characteristic 
equation of feedback systems; root locus approach; nonlinear 
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I.  INTRODUCTION 
For many decades we have seen that some textbooks of 

circuit theory have addressed the Bc as a necessary and 
sufficient criterion for the existence of stable periodic 
processes in electronic circuits. Other basic circuit theory 
textbooks introduced the Bc as a necessary condition for 
oscillations but said nothing about cases where the Bc is 
fulfilled in a circuit but oscillations are impossible (Clark & 
Hess [1], Northrop [2], Gonzales [3]).  

A discussion about the Bc in recent years is demonstrated 
by means of some variants of RC feedback networks, mostly 
second order and using various active elements and different 
approaches, as well [4], [5], [6], [8], [10], [12], [13], [14]. 

E. Lindberg investigated the classical Wien oscillator with 
nonlinear elements made from two antiparallel diodes (the 
OPAMP was linear and frequency independent) and classified 
oscillators on the basis of their topology [4]. 

A.S. Elwakil analyzed and explained the origin of latch-up 
in one modification of the classical Wien oscillator (WO). 
There it was shown how latch-up can be eliminated [5]. 

V. Singh [6] discussed the failure of the Bc on an example 
of an equivalent form of classical Wien oscillator (that was also 
a modification of the WO). He had an attempt to draw attention 
to the close relation between the Bc and Nyquist criterion.  

L. von Wangenheim [7] recently commented on Singh's 
paper where two variants of the modified WO (MWO) have 
been analyzed and made there some serious remarks about 
steady state oscillation existence. 

In [8] M. Taher Abuelma´ati presents a catalogue of RC 
oscillator circuits and shows that the use of the Bc for startup 
condition determination of oscillations yields inaccurate 
results. His conclusions were critically reviewed in [12]. 

A very radical and controversial refutation of the Bc has 
been formulated by K. Lundberg [10]. We will not comment on 
his exclamation “Down with the Barkhausen criterion” 
(because it sounds as a joke). 

B. N. Biswas [13] pointed out the Bc cannot be considered 
as a full-proof criterion for oscillation in practical oscillators. 
For nonlinear analysis of a growth of oscillation he has applied 
the slowly varying function approach. He demonstrated stable 
and unstable limit cycles for soft and hard-self excitations by 
means of nonlinear active element transconductance. 

M. H. W. Hoffmann [14] made an attempt to give a new 
criterion for safe start-up oscillation on one modification of the 
WO example analyzing its equilibrium points. 

 Beside all the above variants of RC feedback circuits, there 
are other RC and LC ones (with lumped or distributed 
parameters) having similar features from the viewpoint of their 
amplitude (module) and phase vs. frequency (argument) 
characteristics [11]. 
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the Slovak Research and Development Agency under the contract
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II. ANALYSIS AND MUTUAL COMPARISON OF DT AND MW 
FEEDBACK SYSTEMS 

Consider the feedback system with DT-circuit and 
amplifier shown in Fig. 1. The amplifier (AMP) can be 
noninverting or inverting, ideal linear, ideal nonlinear one or 
real AMP, according to DT-circuit parameters and selection of 
analysis method. 
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Figure 1.  Equivalent form  of  DT oscillator. 

In this section we will suppose AMP as an ideal and linear 
VCVS characterized by voltage amplification A. For linear 
analysis in Fig.1 we take a transfer function of the DT-circuit 
in normalized form 
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where pRCs = or Ω= js , ωRC=Ω  and m is a positive 
number. 

 

 
Figure 2.  Amplitude vs. frequency characteristics (top) and phase vs. 

frequency characteristics (bottom) of the DT network for different 
values of  the m. 

Corresponding module and argument characteristics 
obtained from (1) for some values of m are depicted in Fig. 2. 
A modification of classical Wien oscillator is shown in Fig. 3 
(redrawn here from [7]). 

The transfer function of the modified feedback circuit for 
R1=R2 and C1=C2 has a normalized form 
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where s and Ω are the same as in (1). 
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Figure 3.  Modification of the  Wien oscillator circuit. 

 

 
Figure 4.  Amplitude vs. frequency characteristic (top) and phase vs. 
frequency characteristic (bottom) of modified Wien feedback circuit. 

Comparing DT and modified Wien feedback network 
module characteristics we can see that the first one has the 
character of the notch filter (for m=2, 10 =Ω=Ω ) where 
changing value of m the minimum will be changed, as well. 
For modified Wien circuit we have not a possibility to tune the 
module characteristic and its minimum (for 10 =Ω  ) rests only 
on level 2/3 (Fig. 4). 

Now, let us have a look at argument characteristics of both 
networks. In the case of DT feedback network their character 
in the vicinity 10 =Ω  changes according to variation 

22 >> m  (Fig. 2). At the modified Wien feedback network 
(Fig.4) we can see a positive derivative of its argument 
characteristic in the whole range of frequencies. 
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Now let us pay attention to the properties of DT feedback 
network with AMP according to Fig. 1. When we will suppose 
the ideal and linear AMP which has voltage amplification A, 
then using (1) and Fig. 1, we can write the transfer function of 
the feedback system in obvious form 
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where )(sTA ⋅  is defined as the loop gain. 

Since )(/)()( sDsNsT = , the characteristic equation (CE) 
of this system can be written in the following form 
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Combining (4) and (5) we obtain the CE in a suitable form 
for analysis 
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Applying the root-locus technique to the solution of (6) and 
changing gain A, we obtain a plot for m>2 in Fig. 5. 

 
Figure 5.  Root-locus diagram for DT oscillator (m>2). 

From the root-locus diagram it is evident that by changing 
amplification (A<0) roots of the CE move together to the point 
(-1,0) and afterwards   a pair of complex conjugate roots occurs 
and approximation to axis Ωj  can be observed. This is a 
typical case of active filter creation with selective properties. 

As we can see from Fig. 5 the minimal value of A for 
oscillation origin is given as follows 

 )1/2/()1/2( −++= mmmA  (7) 

Decreasing value of A (A is negative) according to (7) the 
system will oscillate similarly as a classical Wien oscillator for 
A>3. The difference is only in inverting AMP for the first case 
and noninverting one for the second one. 

Solving CE (6) for m=1 as a function of A, we get a root-
locus diagram in Fig. 6. To be the Bc fulfilled, the feedback 
system need here positive values of A. For all values m<2 roots 
of CEs of feedback system give us similar plots as shown in 
Fig. 6. Here e.g. we can take m=1 and then obtain CE from (6) 
as follows 
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Modified WO (MWO) in the case of ideal and linear AMP 
has the CE in a similar form 
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The similarity of CE of (8) and (9) is not accidental, 
because their module and argument characteristics are similar 
as well. 

At he interval of A <0, 1) two roots of the CE are real and 
lie in LHP. When A=1 one root goes to ∞±  and the second 
one passes across imaginary axis to RHP (that is true for both 
cases, DT and MWO). 

For the interval of A (1, 2> the diagram has two roots on 
real axis Nσ  at RHP and they move from the left and from the 
right side to the point “1” where comes to the coincidence of 
both roots (at A=2). For MWO this value A=1.25. 

For A>2 (A>1.25, for MWO) doubled roots bifurcate and 
create a pair of complex conjugated roots, moving to the 
imaginary axis. 

For A=4 (and A=1.5 for MWO) the complex conjugated 
roots lie on the imaginary axis, 

For A>4 (and A>1.5 for MWO) these roots pass across the 
imaginary axis to LHP. 

The Barkhausen criterion is fulfilled for both circuits, if CE 
roots reach axis Ωj . 

However, we must say that both feedback circuits (Fig. 1 
for m<2 and Fig. 3) are incapable of generating steady state 
oscillations due to the fact that for the value A=1 one real root 
crosses axis Ωj  from LHP to RHP and the second one from  

∞−  to ∞+  and that it leads to a rise of relaxations or directly 
to a saturation of systems. 

Another previously investigated RC and LC feedback 
circuits [11] have similar argument characteristics as were 
shown in Fig.2 (module ones as well). Root locus diagrams 
similar to those in Fig.6 are typical for all these cases where 

ωϕ dd /  (in the vicinity of quasi-resonant frequencies of 
modular characteristics) is positive. Due to this fact, steady 
state oscillations at such feedback systems cannot exist.  

In [7] and discussion [9] where MW and DT oscillator were 
analyzed from various aspects, correct conclusions about non 
existence of continuous oscillations had been made, but the fact 
of the passing of roots from LHP to RHP for A>1 and a 
character of an argument characteristic has not been taken into 
account. 
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Figure 6.  Root-locus diagram for DT oscillator (m=1). 

III. NONLINEAR ANALYSIS OF DT AND MW OSCILLATORS 
At computer simulations some approximations of a 

nonlinear transfer characteristic of an active element were 
considered and tested. Here we will consider an ideal nonlinear 
AMP with nonlinear transfer characteristic function in the form  

 )atan(2 uAu ⋅=   (10) 

We can write a differential equation of the DT oscillator, 
using (1) and (10), as 
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In this manner we can obtain a differential equation for the 
MW oscillator using (2) and (10) 

2

22

2

2

1
1

)atan(1
)1(

23
1

2

u
A

uA
u
uAu

u
Au

u

+
−

⋅+⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+

+
−⎟

⎠
⎞

⎜
⎝
⎛ −

+
=    (12) 

The behavior of the DT oscillator for m<2 is illustrated in 
following two figures (Fig. 7 and Fig. 8), where numerical 
solutions of (11) obtained with the assistance of programs 
MATLAB and MathCAD, as well as the results of simulation 
of the DT oscillator in program MC10 are compared. Figure 7 
relates to DT oscillator with A=4.1, m=1; and Fig. 8 relates to 
DT oscillator with A=3.9, m=1. Identical initial conditions 

V05.0)0( =u , 0=u  were considered in both cases. 
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Figure 7.  Solution of the differential equation (11) for m=1, A=4.1 in 

MATLAB, MathCAD and corresponding DT oscillator simulation in MC10. 
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Figure 8.  Solution of the differential equation (11) for m=1, A=3.9 in 

MATLAB, MathCAD and corresponding DT oscillator simulation in MC10. 
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The results presented in Fig. 7 are in accordance with circle 
root-locus diagram for DT oscillator (m=1) presented in Fig. 6. 
In this case a minimal required “initial” amplification of an 
active element for the origin of oscillation is 4 (Fig. 6) and for 
an amplification greater than the minimal value 4 (e.g. 4.1) 
steady state oscillations are not present. 

The solutions (in the second example) presented in Fig. 8 
are only partly identical. They are approximately equal from 
the beginning to a time at which the program MATLAB ends 
its operation because it is unable to meet integration tolerance. 
From this time to a certain time the rest solutions (in MathCAD 
and MC10) are ambiguous and finally they are practically the 
same again. This ambiguity implies a problem of discovering 
the investigated properties of the circuit in this way and calls 
for more sophisticated methods than are used in our case. 

However the results in Fig. 8 showed that in spite of the 
originated oscillations which are in accordance with the circle 
root-locus diagram in Fig. 6, steady state oscillations, for 
nonlinearity of an active element expressed by function “atan”, 
are not present as well. 

The behavior of the MW oscillator described by differential 
equation (12) is similar to one of the above DT oscillator for 
m<2 (in our case m=1). The solution of the differential 
equations (11) and (12) and corresponding simulations in 
MC10 are comparable. This fact can be illustrated in two 
examples (Fig. 9) of solutions of (12) with assistance of 
program MATLAB. The first solution relates to A=1.55 and the 
second one relates to A=1.45. The identical initial conditions 

V05.0)0( =u , 0=u  were considered in both cases. The 
minimal amplification value of an active element for origin of 
oscillations in this case is A=3/2=1.5. In Fig. 9 we can see 
again that MATLAB ends its operation for the same reason as 
in the previous case; and again steady state oscillations are not 
present here. 
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Figure 9.  Solution of the differential equation (12) of the MW oscillator for 

A=1.55 and  for A=1.45 in MATLAB. 

IV. CONCLUSIONS 
So the Barkhausen criterion is fulfilled (for A=1.5 in the 

case of MW oscillator and for A=4 in the case of DT oscillator 
if m=1) but these circuits cannot oscillate. This fact was 
confirmed not only by means of the linear analysis solving 
appropriated CEs and their root locus diagrams but nonlinear 
analysis and experiments as well [15]. 

Our investigation of these feedback circuits leads us to 
assume that the demand to  

 0/
0

<ωωϕ dd  

could be taken as another necessary condition for steady state 
oscillation existence and understood as a supplement of the 
Barkhausen criterion. 
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