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a b s t r a c t

Due to an increasing need for devices with low power consumption, capacitive pressure sensors have
become good substitutes for the well known piezoresistive pressure sensors. Mathematical models are
necessary to design and characterize the device, preferably the model is analytical such that geometrical
scalings are revealed. We show that, in the case of linear elastic behavior, a simple analytical model can
vailable online 10 May 2010
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be found for a touch mode capacitive pressure sensor (TMCPS). With this model it is possible to readily
evaluate the main features of a TMCPS such as: sensitivity (both in normal and touch mode), touch point
pressure and parasitic capacitance. Therefore, the desired device can be designed without using finite
element modeling (FEM). This reduces the effort needed to design a micromachined TMCPS. Finally,
the model has been compared with a micromachined TMCPS showing an excellent agreement with the
ouch mode experimental data.

. Introduction

Micromachined pressure sensors, both capacitive and piezore-
istive, have been among the most successful MEMS (Micro
lectro-Mechanical Systems) developed in the last 40 years [1,2].

Capacitive pressure sensors typically consist of a plate and a
ubstrate, both conductive, separated by insulating media (e.g. sil-
con dioxide and air as shown in Fig. 1) [3]. The capacitance of the
evice increases when pressure is applied on the plate causing its
eflection toward the substrate. These sensors can be designed to
ork in normal mode, where the deflection of the plate is smaller

han the cavity height, or in touch mode when the plate touches the
nsulator on the bottom electrode. Here we present a simple analyt-
cal model for touch mode capacitive pressure sensors. Depending
n the ratio between the height of the cavity (or gap distance) and
he plate thickness, this type of sensors will work in a linear elastic
egime or in a large deflection regime. We only treat the case of
inear elastic deformations of a circular isotropic plate, i.e. the gap
istance is less than half of the plate thickness [4,5].
Previous work on mathematical models for capacitive pres-
ure sensors have been presented [6–9]. The problem has been
pproached with different techniques, such as assuming a power
eries solution [6–8] and using the pseudo spectral method [9],
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where in both cases the principle of virtual work is used to find
the displacement for large deflection. In this work, we will show
that a closed form expression exist for touch mode capacitive pres-
sure sensors (TMCPSs) in the linear elastic regime, or that is for
small deflections. We will also show how it is possible to obtain
a fitting function describing the relationship between capacitance
and pressure for microfabricated TMCPS from this model. To val-
idate our model we will apply it to a microfabricated TMCPS, the
fabrication of which is described elsewhere [10,11]. In the follow-
ing discussion three main topics will be covered, firstly, in Section
2, a general theory that can be used to model TMCPS will be pre-
sented, then, in Section 3, a description of the sensor fabricated will
be provided and finally, in Sections 4 and 5, the measurement setup
and a comparison between the model and the experimental results
will be presented.

2. Theory

The capacitance–pressure curve (C–P) describing the behavior of
a micromachined TMCPS can be divided into three different zones
of interest: normal, transition and touch mode [12]. The region
before the top plate reaches the bottom of the cavity is referred
as the normal mode operation. Around the point where the plate
touches the bottom of the cavity there is a highly nonlinear rela-

tionship between capacitance and pressure where the sensor is said
to be in the transition zone. Finally, when the membrane is in con-
tact with the insulator layer, which is placed on the bottom of the
cavity to avoid short circuit of the device, the sensor works in touch
mode.

dx.doi.org/10.1016/j.sna.2010.04.030
http://www.sciencedirect.com/science/journal/09244247
http://www.elsevier.com/locate/sna
mailto:giulio.fragiacomo@nanotech.dtu.dk
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ig. 1. Schematic of the capacitive element. Both upper and lower plates are made
f heavily doped silicon while the insulator layer is made of silicon dioxide. The polar
oordinates used in this work are shown as well as some of the main dimensions such
s the plate thickness t, the oxide thickness tox , the radius a0 and the gap distance g.

In this section we will show that, for circular clamped plates,
nder the linear elastic approximation, it is possible to obtain a
eliable model just by dividing the problem into two: normal mode
nd touch mode. In the following sections this model will be used
o derive the main design parameters of a microfabricated TMCPS.

.1. Normal mode

Here the diaphragm type under consideration is that of a uni-
ormly loaded circular plate with radius a0 and thickness t, see
ig. 1. The mechanical properties of the plate are characterized by
he isotropic Young’s modulus E and the Poisson ratio �. The dif-
erential equation, also called governing equation, describing the
isplacement as a function of the radial coordinate, w(r), under pure
ending can be written in terms of the applied external pressure,
, as [4]

∇2∇2w = p, (1)

here D is the flexural rigidity of the plate given by

= Et3

12(1 − �2)
. (2)

To simplify determination of the constants of integration in a
olution to Eq. (1) it is useful to calculate the shearing force per
nit length F in the plate; F can be calculated from the force balance
quation

�rF =
∫

2�pr dr, (3)

here r is the radial position, therefore

(r) = pr

2
+ c

r
, (4)

here c is a constant of integration. In the normal mode case c is
rivially zero as can also easily be seen if a definite integral had been
sed in Eq. (3); however, in the touch mode case which we shall
onsider later c /= 0 and then Eq. (4) is needed for identification of
. Thus the deflection of a circular diaphragm fixed at the perimeter

an be obtained solving Eq. (1) [4]

(r, p) = pa4
0

64D

(
1 −
(

r

a0

)2
)2

≡ w0

(
1 −
(

r

a0

)2
)2

, (5)
Fig. 2. Touch mode operation. When the sensor is working in touch mode the prob-
lem is split into two parts: the touching circular area of radius ab and the untouched
area which is an annular region of inner radius ab and outer radius a0; av is defined
as the difference between the outer and the inner radii.

where w0 is referred to as the center deflection and is a function of
the pressure p. From Eq. (5) the capacitance can be found as

C =
∫ 2�

0

∫ a0

0

�0�oxr dr d�

tox + �ox(g − w(r))
= C0

arctan h(
√

�)√
�

, (6)

where � is the ratio of the center deflection to the effective thickness
of the dielectric

� ≡ w0

g((tox/g�ox) + 1)
, (7)

and

C0 ≡ ��0�oxa2
0

g�ox + tox
, (8)

is the parallel plate capacitance for a vacuum–gap distance of g and
a thin insulation layer of oxide on the bottom plate of thickness tox

and relative dielectric constant �ox.

2.2. Touch mode

When the top diaphragm of the capacitor comes into contact
with the fixed bottom plate a transition occurs to a different oper-
ation mode, referred to as touch mode (see Fig. 2). In this case, the
center point of the plate is no longer a part of the solution of Eq.
(1) and the shearing force must vanish at the touching line so the
constant of integration of Eq. (4) assumes the following value

c = −1
2

a2
bp, (9)

where ab is the radius of the touching surface. With this assumption,
the governing equation has been solved [4] but, even neglecting the
stretching effect in the plate, the expression obtained is not suitable
for the evaluation of the capacitance as a function of the applied
load done later on in this section. A simpler approach considers the
total capacitance as being made up by two distinct parts [7,8]. One
is given by the part of the diaphragm where the two electrodes
are separated by the insulating oxide. This part is a simple parallel
plate capacitor with a fixed oxide gap of tox and a radius ab that
increases with an increasing pressure. The second is given by the
annular part of the diaphragm which is not touching the bottom
electrode and has a fixed outer radius a0 but a varying inner radius
ab which increases with increasing pressure, thus decreasing the
area not touching the bottom electrode (the total area subtracted
the area touching the bottom electrode). Therefore, we will assume
that the deflection function in touch mode can be approximated by⎧⎨ g 0 < r < ab(p)( )

w(r, p) =⎩ g 1 − r − ab(p)

av(p)
ab(p) < r < a0

, (10)

where the radius of the plate touching the bottom of the cavity, ab,
is a function of pressure as is also the part of the diaphragm not
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ouching the bottom plate, av. Furthermore, Eq. (10), which will be
sed to model the shape of the deflected plate, is seen to satisfy the
oundary conditions

(a0) = 0,
dw

dr
|r=a0 = 0, w(ab(p)) = g,

dw

dr
|r=ab(p) = 0. (11)

Note that a0 − ab = av, thus there is only one independent vari-
ble. Inspired by the work of [7,8], we calculate the variable av by
onsidering only the part of the plate bending, excluding the part
ouching the bottom of the cavity. In the simplified model proposed,
he center point deflection is forced to equal the gap distance w(0,
) = w0 = g. If the membrane only touches in the center point av = a0,
nd the pressure is obtained from Eq. (5). We now assume that Eq.
5) remains valid at higher pressures if a0 is replaced by av and thus

v(p) ≡
(

64Dg

p

)1/4
. (12)

In other words the radial deflection profile of the part of the
iaphragm not touching the bottom electrode is taken to be the
ame as that of the diaphragm in normal mode. This will be shown,
n Section 5, to be a reasonable assumption as has been shown for
he case of large deflection [7,8]. The capacitance in touch mode
sing Eq. (10) is found to have an analytical expression

=
∫ 2�

0

∫ a0

0

�0�oxr dr d�

tox + �ox(g − w(r))

= �0�ox�a2
b

tox
+ 2��0�ox

g�ox + tox

∫ a0

ab

r

1 − �(1 − ((r − ab)/av)2)
2

dr, (13)

here

≡ 1
(tox/g�ox) + 1

, (14)

s a constant related to sensor design and attains a value between
ero and one, � ∈ ]0;1[. For a large gap distance compared to the
xide thickness, � will be close to 1. This is an interesting case which
s considered in the following section since such a design has the
argest sensitivity. Introducing a change of variables u ≡ (r − ab)/av,
he integral � of Eq. (13) can be further simplified

=
∫ a0

ab

r

1 − �(1 − ((r − ab)/av)2)
2

dr

= a2
v

∫ 1

0

u

1 − �(1 − u2)2
du + abav

∫ 1

0

1

1 − �(1 − u2)2
du (15)

(k1a2
v + k2abav), (16)

here the two integrals k1 and k2, are independent of the pressure.
hese two integrals can be solved analytically as follows:

1 = 1
2

arctan h
√

�√
�

(17)

2=
arctan

(
(
√

�) /
(√√

�−�
))

2
√√

�−�
+

arctan h
(

(
√

�) /
(√√

�+�
))

2
√√

� + �
,

(18)

oth k1 and k2 vary from 0 to ∞ as � varies from 0 to 1.
Inserting Eq. (16) in Eq. (13) and rearranging in terms of the
irtual radius av the capacitance in touch mode can be written as

= Cox

((
1 + 2

k1 − k2(
(gεox/tox) + 1

)
)

a2
v

a2
0

+ 2

(
k2(

(gεox/tox) + 1
) − 1

)
av

a0
+ 1

)
,

(19)
Fig. 3. Comparison between the touch mode capacitance, Eq. (19), as a function
of normalized pressure 
p calculated at different values of � and the capacitance
calculated from Eq. (22).

where Cox is the oxide capacitance

Cox ≡ �0�ox
�a2

0
tox

. (20)

Thus, the capacitance of a sensor in touch mode can be described
as a second order polynomial in terms of av which is linked, as
shown in Eq. (12), to the applied pressure.

2.2.1. Special case g�ox � tox

The special case, where the product of the gap distance and the
dielectric constant of the oxide is much larger than the oxide thick-
ness, is interesting from a device design point of view, when high
sensitivity is desired. Using this assumption in Eq. (19) together
with Eq. (12) and defining


 = a4
0

64Dg
, (21)

the capacitance becomes

C ≈ Cox

(√
1


p
− 2 4

√
1


p
+ 1

)
, (22)

and it is seen that C is a polynomial in (
p)−1/4. Note, that also the
capacitance of Eq. (19) is a second order polynomium in (
p)−1/4,
the coefficients though are different and are functions of � only.
This makes it simple to fit the capacitance–pressure curve in touch
mode, as it can be seen in Section 4. Even though the results
obtained will show that, in our case, this approximation gives a
simple and reliable way to estimate the characteristics of the device
fabricated, it should be kept in mind that it is based on the fact that
the two terms (k1 − k2)/

(
(gεox/tox) + 1

)
and k2/((gεox/tox) + 1), in

Eq. (19), were taken to be negligible and that will intrinsically affect
the accuracy of this model. For the sensor fabricated, � = 0.982 and
these two terms are −0.127 and 0.151, respectively.

In Fig. 3 the relative capacitance change �C/Cox from Eq. (19) is
plotted as a function of normalized pressure 
p at different values
of �; for comparison also Eq. (22) is shown and it is seen that as �
approach 1 the two expressions agree.
3. Sensor design

A micromachined TMCPS previously fabricated, see [10,11], was
used in order to validate the model presented in Section 2. It con-
sist of an array of hexagonal clamped silicon plates suspended by
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Fig. 4. Artists view of the micromachined TMCPS. The active area of the sensor is
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Fig. 5. Schematic of the measurement setup. A Druck DPI 520 pressure controller
and a HP 4294A Precision Impedance Analyzer are controlled by a laptop where a
Labview code has been implemented. For each pressure value applied on the TMCPS
an impedance measurement is performed by the analyzer.

Table 2
Measured geometrical values of the sensor fabricated.

Parameter Measured value

a0 75 �m ± 1 �m

Fig. 6 shows the capacitance pressure characteristics for the sen-
sor when working in normal mode. Eq. (6) is a useful starting point
for analysis of the sensor. By adding a parasitic capacitance Cp and
iven by N silicon plates with hexagonal shape. The capacitors given by each single
lement are in parallel. An insulating groove separates the active area from the rest
f the device in order to reduce parasitic capacitance.

SiO2 honeycomb structure (see Fig. 4). The capacitors are there-
ore made up by a three layer structure: two heavily doped silicon
ayers with a thin silicon dioxide layer in between. Furthermore, to
nhance temperature insensitivity, the cavities are sealed in vac-
um (10−2 mbar nitrogen) using a fusion bonding technique [14].
his design is implemented to minimize problems arising from
arasitic capacitance, often one of the major issues for capacitive
ensors [15]. A parallel combination of capacitors is then obtained,
herefore the overall sensor capacitance is given by [10]:

(p) = NCc(p) + Cp, (23)

here N is the number of plates (in this case N = 180), Cc is the
apacitance due to the active area and Cp is the parasitic capaci-
ance. The clamped plates of the TMCPS consist of the device layer
f a SOI wafer and part of its buried oxide. The plate thickness
as a nominal value of t = 2.5 ± 0.7 �m with 2 ± 0.5 �m of Si and
.5 ± 0.2 �m of SiO2. On a silicon wafer, that is fusion bonded to the
OI wafer, a thermally grown oxide defines the gap distance which
s g = 420 ± 5 nm. Since the gap distance is much smaller than half of
he plate thickness, this kind of sensor will work in the linear elastic
egime. It is important to point out that this is the only require-
ent in the model presented in the previous section. Any circular

lamped plate that fulfill this requirement can be described by the
nalytical model presented.

In order to calculate a fitting function for the C–P curve of this
ensor another important parameter is needed: the radius of the
late which has been approximated with the inner radius of the
exagons a0 = 75 ± 1 �m. During fabrication it is also possible to
easure the thickness of the insulator layer on the bottom of the

avity which results in approximately tox = 30 ± 5 nm. Finally, from
he geometrical and material properties of the sensor described,
t is possible to estimate all the parameters of interest such as the

arallel plate capacitance, C0, the parasitic capacitance, Cp, the flex-
ral rigidity, D and the touch point pressure pt. All these values are
eported in Table 1.

able 1
alculated parameters of the sensor fabricated.

Parameter Calculated value

NC0 66.0 pF
Cp 61 pF
D 2.0 × 10−7 N m
pt 1.70 bar
N 180
g 420 nm ± 5 nm
tox 30 nm ± 5 nm

4. Measurement setup

The TMCPS described in the previous section has been charac-
terized with a measurement setup consisting of a Druck DPI 520
pressure controller and a HP 4294A Precision Impedance Analyzer
(see Fig. 5). Both instruments have been connected to a laptop and
controlled by a custom Labview program. The C–P curve has been
obtained varying the pressure from 250 mbar to 10.9 bar in steps of
26 mbar.

5. Fitting

In this section a fit to the measured C–P data, using Eqs. (6) and
(22), is done. Using the measured values presented in Table 2, fit-
ting parameters are calculated and physical quantities such as the
flexural rigidity and the parasitic capacitance are estimated.

5.1. Normal mode
Fig. 6. Capacitance pressure characteristics of the sensor in normal mode. The solid
line represent the fit calculated using Eq. (26), on the data points (circles) measured
from 250 mbar to 1.8 bar.
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Table 3
Results from the analysis of normal mode behavior.

Parameter Fitted value
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Table 4
Results from the analysis of touch mode behavior.

Parameter Fitted value
NC0 62.0 pF
Cp 71.8 pF
D 2.19 × 10−7 N m

ssuming g�ox � tox, we obtain

= w0

g((tox/g�ox) + 1)
≈ w0

g
, (24)

nd

(p) = NCc(p) + Cp = NC0

√
1


p
arctan h

(√

p
)

+ Cp, (25)

Noting, that C(0) = NC0 + Cp, we can write

= NC0

(√
1


p
arctan h

√

p − 1

)
+ C(0), (26)

hich is a suitable fitting function with three parameters C0, C(0)
nd 
 to be determined from the plot. This expression has been used
s a fitting function to analyze the data shown in Fig. 6, the solid line
hows the fit. As a0, N and g can be measured it is possible to obtain
he effective plate stiffness, D, from the fit. The extracted values are
hown in Table 3. The rigidity is as expected around 2 × 10−7 N m,
s can be estimated from Eq. (2).

.2. Touch mode

In Fig. 7 the overall capacitance pressure characteristics is
hown. The fact that Eq. (19) can be represented by a second order
olynomium in p−1/4 is used in this section for analysis of the sen-
or when working in touch mode (see Fig. 2). By adding a parasitic
apacitance, Cp, to Eq. (19) we obtain
(p) ≡ b0 + b1p−1/4 + b2(p−1/4)
2
, (27)

here the coefficients are b0 = NCox + Cp, b1 = −2[1 − k2(1 −
)]NCox/ 4√
, and b2 = [1 + 2(1 − �)(k1 − k2)] NCox/

√

.

ig. 7. Capacitance pressure characteristics in normal, transition and touch mode.
sing Eqs. (26) and (27) a curve (solid line) that can fit the data points (circles)
easured both in normal and touch mode has been obtained.
tox 27.5 nm
Cp 70.5 pF
D 2.72 × 10−7 N m

From the relation between � and the capacitance ratio

� = 1 − NC0

NCox
= 1 − NC0

b0 − Cp
, (28)

we calculate � , which is very insensitive to errors in the parasitic
capacitance Cp since NCox � Cp (for the present sensor Cp is less than
2% of NCox). The oxide thickness may be calculated directly from

tox = N
�a2

0�0�ox

NCox
= N

�a2
0�0�ox

b0 − Cp
, (29)

which also is quite insensitive to Cp. Finally, the flexural rigidity
(and thus 
) may be calculated from

D = 1
4g

(
a0b2

−b1

)4 [1 − k2(1 − �)]4

[1 + 2(1 − �)(k1 − k2)]4
, (30)

while the exact value of Cp is calculated such that the coefficients
b0, b1, and b2 are consistent with the calculated parameters.

Thus, the oxide thickness tox, the parasitic capacitance Cp and
the flexural rigidity D can be obtained from the fit. Table 4 shows
the extracted values in the touch mode case. The oxide thickness
is in good agreement with the fabrication value and the value
extracted for the parasitic capacitance is close to the one reported
in Table 3 for the normal mode case. Also here, the rigidity is around
2 × 10−7 N m.

In the next section we will use the results obtained from this
section in order to fit the entire C–P curve of the TMCPS described
previously.

6. Discussion

In the previous section the problem was split into two: the nor-
mal mode and the touch mode region. Combining Eqs. (26) and (27)
it is possible to obtain a fitting function for the entire C–P curve as it
is shown in Fig. 7. An excellent match between the data points and
the fitting functions is obtained both in the normal mode and in the
touch mode region. As shown in the inset of Fig. 7, the model does
not give as satisfactory as result in the transition region because
pull in and adhesive forces have not been taken into account. None
the less, the maximum deviation of the model from the data points
is only 3.7%. Comparing the extracted values of Tables 3 and 4, two
different results for the flexural rigidity are found. This is due to the
fact that when the plate touches the bottom of the cavity it becomes
stiffer as was noticed in previous work [13]. So, in order to obtain an
accurate result for this parameter, both stretching effects and the
exact value of the terms in Eq. (19) should be taken into account in
the fitting function. As seen from Table 4 the fit allows extraction
from measurements of the parasitic and ideal capacitance value, the
latter being within 10% of the value calculated from the geometrical
parameters. The parasitic capacitance extracted from the measure-
ments Cp ∼ 72 pF is larger than the calculated value of 61 pF, since
the calculated parasitic is the pure die parasitic capacitance. The
bonding wires, the chip carrier and the measurement setup add
some capacitance that may explain the discrepancy; for instance

we have measured 4 pF for an empty chip carrier.

The touch point pressure has been estimated to be at the maxi-
mum in the sensitivity curve which is given by the first derivative
of the C–P curve, this can easily be extracted from the data points
collected. The experimental result of 1.77 bar compares well to the
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xpected value of 1.70 bar as estimated in Table 1. Furthermore, by
sing this model, the sensor can be designed to work in a specific
ange of pressures without entering in the saturation region where
he capacitance is constant even if the pressure applied increases.
inally we would like to point out what can be achieved from a
esign perspective; under the hypothesis of linear elastic regime,
iven a set of fixed parameters such as the plate radius, the plate
hickness and the oxide thickness it is easy to evaluate important
esign parameters such as the capacitance and the sensitivity of
he device. Therefore it is possible to use this model to predict the
esired C–P curve and to evaluate the parasitic capacitance of the
ensor when fabricated.

. Conclusions

An analytical model for TMCPS has been presented. It has been
hown that, in the linear elastic regime, there is a closed form solu-
ion to the integral defining the capacitance of a device driven into
ouch mode. Combining this with the solution found for a device
orking in normal mode a fitting function for the entire C–P curve
as been found.

The fitting function has been tested using a device working in
he linear elastic regime and an excellent match between fitted and

easured parameters has been shown. With the derived analytical
odel a TMCPS can be designed to have the desired capacitance

nd sensitivity by fixing a set of fabrication parameters.
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