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Linear Systems - why

¢ Why?
— Because they can be analyzed!
« frequency domain, modal analysis
« time domain, s-plane, Laplace Transforms
— Many real systems are sufficiently linear (meaning, over a useful
range) that it's worth the effort
« Danger
— If you forget, in the end, that you assumed linearity, you can go way
wrong
« thermal runaway provides a specific example
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Outline
» Linear Systems fundamentals
— why
— what

— some useful consequences
« linear superposition
« reciprocity
* Thermal RC Networks

» Case study — Calibration Chamber
— design
— step response experiments
— fitting to measured data
— predicting control input
— testing predictions

Linear Thermal Systems (Roger Stout)

Thermal Runaway
once power or tendency
temperature takes to heat
power you to here, #/system line
system runs away —__
runaway!
small
perturbations
around this
point are linear device line
and stable
/<" teridency
to cool
Q —,
tendency
to heat ! junction temperature
T
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Linear Systems - why

¢ Why?
— Because they can be analyzed!
« frequency domain, modal analysis
« time domain, s-plane, Laplace Transforms
— Many real systems are sufficiently linear (meaning, over a useful
range) that it's worth the effort
« Danger
— If you forget, in the end, that you assumed linearity, you can go way
wrong
« thermal runaway provides a specific example
— always prudent to review the range of the results to be sure you
haven't gone too far outside the linear window, and what the
implications might be
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Linear Systems — what

» Changes in the output variables are proportional to changes
in the input variables

m - 20143an 29 Linear Thermal Systems (Roger Stou)
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Outputs Proportional to Inputs

A-I-lzf"‘n'%*‘f"n'qz+"'+a1n'Qn

ATz =8y -0, tay -, +-+tay,-q,

ATm =8y 0 ta, 4, +-+a,,-q,
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Linear Systems — what

Changes in the output variables are proportional to changes
in the input variables

When time is considered, governing differential equations
are linear

——e TR
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Governing Differential Equations are Linear

0T oT o°T oT
kx_2+ky_2+k2_2:pcp_
OX oy oz ot
q=hA-(T-T,)
dT T-T,
m - —d+
dt R,

e |
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Linear Systems —what

» Changes in the output variables are proportional to changes

in the input variables
* When time is considered, governing differential equations
are linear
¢ In the thermal domain
— these are constant:
« thermal conductivity
« heat capacity
« density
 convection film coefficients

e |
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Coefficients are constant

0T 0T 0T oT
K~z Ky~ +k, —5=pC, —
X dy oz at
q=hA-(T-T,)
o ﬂ =Qq+ T-T
ot Ry,
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Linear Systems — what

» Changes in the output variables are proportional to changes
in the input variables
* When time is considered, governing differential equations
are linear
¢ In the thermal domain
— these are constant:
« thermal conductivity
« heat capacity
« density
« convection film coefficients
— these restrictions generally apply:
« convection is in algebraic proportion to temperature
differences

--—-u-ﬂ
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Non-symmetric convection Linear Systems — what

* Upwind and downwind in forced-convection

* Changes in the output variables are proportional to changes
dominated applications

in the input variables

* When time is considered, governing differential equations
are linear
* In the thermal domain
i — these are constant:
« thermal conductivity
« heat capacity
« density

airflow

« convection film coefficients
Heat in at “A” will raise temperature - .
of “C" more than heat in at “C” will — these restrictions generally apply:
raise temperature of “A” « convection is in algebraic proportion to temperature differences
p 9 prop! p

« radiation and free convection are inherently non-linear

Linear Thermal Systems (Roger Stout)
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Radiation Resistance Poll Question #1

basic heat transfer relationship for surface
radiation is 4"-order in temperature, so

R= 1 obviously not « Which of the following are intrinsically non-linear ...
O'ﬁFA(]HZ +Tazxm+Ta) really a constant a) Conduction heat transfer
b) Free convection heat transfer
Free Convection c) Forced convection heat transfer
d) Radiation heat transfer
not explicitly temperature dependent,
R=— but h, the film coefficient, depends on
A density, which is highly temperature
dependent

(choose all that apply)

Linear Thermal Systems (Roger Stout)
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Linear System Consequences Role reversal

« If outputs are proportional to inputs, then the inverse
problem (exchanging roles of inputs and outputs) is also » Temperature can be the output, and power the input

linear
OR0k

« or, power can be the result, and temperature the input

Qa0
eJx eJx

» either way, it's a linear equation

Linear Thermal Systems (Roger Stout)

Linear Thermal Systems (Roger Stout)
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Linear Algebra Matrix Equivalent Linear System Consequences

« If outputs are proportional to inputs, then the inverse
« Temperature can be the output, and power the input problem (exchanging roles of inputs and outputs) is also

linear
= [(-) T — In thermal systems, you can think of temperature as an output and
Ix X power (heat) as the input, or you can think of temperature as the

input and heat flow (power) as the output; either way, the problem is
< or, power can be the result, and temperature the input linear

e Linear superposition
[6 ]—1 _ [9 ]—1 .T — solutions to particular cases can be linearly
2 2 & combined to create solutions to other cases

« either way, it's a linear equation

Linear Thermal Systems (Roger Stou) It Feoaducton® ﬁﬁ 9 Linear Thermal Systems (Roger Stou) O embcomroe® m

Linear System Consequences

Linear superposition « If outputs are proportional to inputs, then the inverse
—what is it? problem (exchanging roles of inputs and outputs) is also
linear
+ The total response ofa point within the — Inthermal systems, you can think of temperature as an output and
. . power (heat) as the input, or you can think of temperature as the
system, to excitations at all points of input and heat flow (power) as the output; either way, the problem is
the system, is the sum of the individual linear
responses to each excitation taken * Linear superposition
independenﬂy_ — solutions to particular cases can be linearly combined to create

solutions to other cases

— applies both spatially and temporally

e T Syt oger S —— o T o PP |

Ul1l=0.16 W, U2=0.30 W; U3=0.10 W Bar Charts and Stacked Bar Charts
= (linear superposition visualized in Excel)
B —

120 120
g100 §100
2 80 g 80
E £
% 60 | S 60
g 40 | % 40
< 20 2 20
o 0
Jl1 J2 J3 J4 )5 J6 Rl R3 R5 B Jl1 J2 J3 J4 )5 J6 RlL R3 R5 B
result location result location
@ilat0.4wW mJ)2at04wW 0J3at04wW @Jlat0.4w mJ)2at04 W 0J3at04wW
‘ 0J4at04wW Wm)5at05W @J6at02W ‘ OJ4at0.4wW mJ)5at05W @mJ6at0.2W
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Linear System Consequences

« If outputs are proportional to inputs, then the inverse

problem (exchanging roles of inputs and outputs) is also Linear Superposmon . temporally
linear
— In thermal systems, you can think of temperature as an output and * The combined response of a point to
power (heat) as the input, or you can think of temperature as the multiple independent time-varying inputs is
:ir:ilgrand heat flow (power) as the output; either way, the problem is the sum of the transient response of each
« Linear superposition individual time-varying input

— solutions to particular cases can be linearly combined to create
solutions to other cases

— applies both spatially and temporally [AT (R(0) f.(0)... f, (t))]:[AT ( fl(t))]"%-r (f, (t))]+ o +kT (f, (t))]

Linear Thermal Systems (Roger Stou) Bt Feralorauct ﬁﬁ
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Basic Heating Curve - a “Single Pulse” Double Step

o double step, decomposed into two single steps

step input

P——————————————————— Q
of power le B —

a f t a i
t

Temperature response of double step
(constructed from superposition of two
transient RO single pulse responses)
response
curve

RO R()

plus equals

e T Syt oger S —— o T i PP |

Single Square Pulse Two Differing Pulses

Finite pulse, decomposed into two infinite steps Two finite pulses decomposed into infinite steps

Qp—
° oy P R Q—
equals plus is made up of
a t t

-Q
Temperature response of a finite pulse
(constructed from superposition of two single
pulse responses)

—
RO ~
equals >

Temperature response for two finite pulses
(constructed from superposition of four single
pulse responses)

RO RO

plus

R(O)

results in this

Linear Thermal Systems (Roger Stout)
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An Arbitrary Pulse

An arbitrary pulse decomposed into several infinite steps

a

Temperature response constructed for this arbitrary pulse

R,

Linear Thermal Systems (Roger Stou) O Fralradicton® ﬁﬁ
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Linear System Consequences

« If outputs are proportional to inputs, then the inverse
problem (exchanging roles of inputs and outputs) is also

— In thermal systems, you can think of temperature as an output and
power (heat) as the input, or you can think of temperature as the
input and heat flow (power) as the output; either way, the problem is
linear

* Linear superposition

— solutions to particular cases can be linearly combined to create
solutions to other cases

— applies both spatially and temporally

* Reciprocity

— a particular sort of mathematical symmetry that arises in

fully linear systems

Linear Thermal Systems (Roger Stou)

The Reciprocity Theorem

Linear Thermal Systems (Roger Stour) [ re— ﬁu

——e TR

Electrical Reciprocity

|
(

Pl

—

—

Electrical Reciprocity

|
t | b
T t
La ! ll +
“*
2v0.3V
“ 4T
o
g —]
T
—= = l
f

Linear Thermal Systems (Roger Stout)

e |

Linear Thermal Systems (Roger Stout)

response
here

Thermal Reciprocity

heat input here

same
response
here

--—-u-ﬂ
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Another Thermal Reciprocity Example

heat input here

Linear Thermal Systems (Roger Stout)
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When Does Reciprocity NOT Apply?

¢ Upwind and downwind in forced-convection
dominated applications

same )
response airflow
here response
here

Heat in at “A” will raise temperature

of “C” more than heat in at “C” will B and 'D" may
raise temperature of “A” still be roughly
P reciprocal

+ 20143an 29 Linear Thermal Systems (Roger Stout)
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(Square part of) Matrix is Symmetric Transient Reciprocity
250 -
columns are the “n” heat sources [T TTTTsees £ ic Dual P-Channel|
o= - e st
n [ ([ es )55 60 | 22 | 10 el o i st
— 2 200 | o
Jz< 65 )1-( 60 55( 25 )u 2 e
g
33 [~55"] 60 | 65 |21 15 =) Py L
< 150 | i ol
rowsare 94 | 60 | 55 | 73 18( 1 g b | L
the “m” 5 22( 25 )21 18 | 1287 |14 8 g //""
response — 5 100 /‘
locations 6 | 10 [T 15( 1 )14 180 E o on & v 1l
g R Lo
R1L | 73 | 65 | 55 =59~ 22 | 10 g 1..‘ // I 2
2 50 - - el
R3 | 55 | 60 | 63 | 61 | 21 | 15 £ [ ) s Lot selt heaiing
= o Q2 heated by Q1
= I |1 Li ——Q1 heated by Q2
Rs [ 20 | 24 | 14 | 19 | o5 | 15 s sk Lt L Q1 heated by
0 L il 1 VY
B 65 63 62 63 21 12 0.0001 0.001 0.01 01 1 10 100 1000
heating time [s]
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* Reciprocity ...

a) Relates temperature inputs and temperature
responses

b) Is a covert CIA program to take out drug cartels
c) Relates heat inputs and temperature responses
d) Never applies to linear systems

(choose all that apply)

40 m - 20143an 29
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Poll Question #2 Outline
* Linear Systems fundamentals
— why
— what

— some useful consequences
« linear superposition
— in space and time
« reciprocity
e Thermal RC Networks

» Case study — Calibration Chamber
— design
— step response experiments
— fitting to measured data
— predicting control input
— testing predictions

- 2014Jan 29 Linear Thermal Systems (Roger Stout)
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Thermal RC Networks

Thermal/Electrical analogy
Grounded vs. Non-grounded
— physical significance

— mathematical convenience

— interchangeability

1-rung model(s)

2-rung models

Linear Superposition: Tutorial on Thermal-RC Networks
January 29, 2014
Roger Stout, P.E. of ON Semiconductor

Thermal / Electrical Analogy

temperature <=> voltage
power <=> current

temp/power <=> resistance

energy/degree  <=> capacitance

— "tau" is not RC product except when ...

s

Linear Thermal Systems (Roger Stout)
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Conduction Resistance

basic heat transfer relationship for 1-D conduction

Convection Resistance

basic heat transfer relationship for surface cooling

dx L
if we define
R AT
q
then
R:L
k-A

Linear Thermal Systems (Roger Stout)

e |

g=h-A-AT
if we define
R=AT
q
then
R=1
hA

e |

Linear Thermal Systems (Roger Stout)

Radiation resistance

q=c-c-F-AT*-T*)

1
R= o-eFA(EF +Tazxm+Ta)

basic heat transfer relationship for surface radiation

ceF AT +T2) (T2 -12)

= oeF A +T2T+T,)(T-T,)
= oeF AT +T2T +T,) AT
if we define
rR_AT
q
then

obviously not
really a constant

Linear Thermal Systems (Roger Stout)

Models: Grounded vs. Non-Grounded

(“Cauer” ladders) (“Foster” ladders)
» Physical significance: if thermal capacitors are

grounded, they bear some relationship to a physical
SYStem,; not so for non-grounded C’s

* Mathematical convenience: certain non-grounded
networks (ladders) are mathematically trivial

 Interchangeability: single-input thermal systems can
be represented as either grounded or non-grounded

--—-u-h

Linear Thermal Systems (Roger Stou)
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Actual Thermal RC Networks Laplace Transform Basics
Non-Grounded vs. Grounded C comparison

T time frequency
“Foster” ladder| J “Cauer” ladder|T; ftem domain s-plane domain
s
17004 °C/W 7.02E-04 W-sec/°C 2.3207 “CIW 5.96E-04 W-sec/"C function f@) F(s)= J e " f(ydt
0
ar
2.6627 4.41E-03 2.7397 4.20E-03 derlvative E sF(s) [,f(o )]
3.9740 5.89E-02 83551 = 0w resistor v = Ri ( Z.=R ) Z,=R
100255 1.55E-01 146949 LOIE-01 oy ! €
i L capacltor | i=C o Z.= < Ze= Tl
11.7747 6.03E-01 210538 4.13E01 di
Inductor | v=L— Z, =sL Z, = joL
35.3008 146E+00 0637 920501 ;3 -
exponentlal I e —
33.1212 4.16E+00 9.7581 L14E+01 P s+a

Linear Thermal Systems (Roger Stout) 9+ Linear Thermal Systems (Roger Stou)

Laplace Transform Basics, cont’ 1-Rung Model(s)

* Your basic thermal network:

by definition,
— o(s) =1 TC 1 ! I
- a0 s Tl B 21 |
o) T(s) as) s0 | T : lR

l T(s)=0(s)-Q(s)
I or
Q(s)=07(s)-T(s)

Linear Thermal Systems (Roger Stout) 0t Bermbomiicbo ﬁu 51 Linear Thermal Systems (Roger Stout) ey — ﬁu

2-Rung Model (Non-Grounded Capacitor)

1
¢ +L
R

Rl
=)Aok
RCs+1 RCys+l
R R,
RCys+1
D — RRCs+R +R
TR # RGR.G,s + (RC, + RC, + RC,)s +1
PTRCs+1

Linear Thermal Systems (Roger Stou) s Linear Thermal Systems (Roger Stout) [ h
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Compare the Transfer Functions

From the non-grounded-capacitor model

Ri , Ry (Ci+CRRs+(Ri+R,y)
RiCis+1 R,Cps+1  RC,R,C,52 +(RiCy +R,Cy )5 +1

From the grounded-capacitor model:

RiR,C,5 + (R, +R,)
RiC;R;C,5% +(RiCy + RyCy + R,Cy Js +1

s

Linear Thermal Systems (Roger Stout)

Interesting (and Important) Implications
“Foster” ladder “Cauer” ladder

Order matters, so a “split” can
make good physical sense.

T

Rungs can be in any order
and T; has identical behavior!
So where do you “split” it?

T,

J 2.3207 °CIW 5.96E-04 W-sec/°C
17004 °CIW 7.02E-04 W-& package 7397 420E-03
2.6627 = 441E-03 A
8.3551 3.67E-02 I
3.9740 T~ 5.89E-02 TEms == . _—l=
29 146949 O1E0L I
100255 o= 1SSE0I o
4 v
117747 6.03E-01 . 10538 413E01
environment
35.3008 146E+00 30.637 9.20E-01
331212 4.16E+00

9.7581 LI4E+01

=l

— u‘

Ty o

Linear Thermal Systems (Roger Stout)

58.

Outline
« Linear Systems fundamentals
— why
— what

— some useful consequences
« linear superposition
— in space and time
* reciprocity

* Thermal RC Networks

¢ Case study — Calibration Chamber
— design
— step response experiments
— fitting to measured data
— predicting control input
— testing predictions

Linear Thermal Systems (Roger Stout)
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2-Rung Models Compared

Time constants are roots of denominators
"tau" is not RC product when capacitors are grounded!

grounded-capacitors: | (Cauer)

non-grounded

capacitor:

LRiR,

(Foster) — RRGs+RAR e L STRRC,
RGR,GS +(RC, + RC, + RC,)s+1 [ [“L][“L)

By

R . R, where time constants are ' ’
RGs+1 RCys+1 2-RC T -
ca i o= 3 I S T
can be writen (l+£+c)+ (1+£+r:) 4 BRI

1.1 11 (S (S r
Gal'o Lt 10010.010.99 [1.01
T - 2RG 10 | 0.1 ]0.91 [1.10
(H:H),J[H,g,) 4t 3 [ 1/3[0.73 [1.36
where time constants are ¢ < ¢ 1 0.1 1090 [1.11
7=RC ©=RC (mdeﬁm" R ng] 1| 1 [038]2.62
e TR C

Linear Thermal Systems (Roger Stou)

o A

RC Networks in Excel®

Foster ladders of any number of rungs, having
simple RC products and associated closed-form
transient response, can be easily built and
computed using Excel techniques.

A Foster ladder even can be converted to a Cauer
equivalent using Excel techniques. (However,
there is no a priori guarantee that all R’s and C's
will be positive!)

e |

Linear Thermal Systems (Roger Stout)
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Temperature Chamber Design Goals

¢ Test5 DUT's simultaneously

— package types: TO18 and TO39
* Range: room temperature to 200 °C
¢ Hold +/- 0.1 °C uniformity across all DUT’s

* Make a 45 °C temperature step with about
0.1 °C accuracy, and be stable within
about 15 minutes

Linear Thermal Systems (Roger Stou)

--—-u-ﬂ
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Temperature Chamber Schematic
|

B Y \
insulation/housing
;X i AW ,\\\‘
0 oo, | e [
upper .

block

heaters

i /%& i /
204

clamp
blocks

Linear Superposition: Tutorial on Thermal-RC Networks
January 29, 2014
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FEM of Inner Heater Block Assembly

FEM Steady State Results

20214 Min

steady state
solution at
40w

Closer view of isolating air space

Looking into chamber, lid removed

Upper heater block lifted off

11
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View of DUT cavities in lower heater block

Side view of upper block and heater clamp

Linear Thermal Systems (Roger Stout)

Another view of opened heater assembly Lid ready to be placed onto chamber

Chamber, temperature controller & scanner Poll Question #3

* Roger’s high-temperature calibration chamber most
resembles:

a) A neutrino detector
b) A stainless steel hatbox
c) A bomb calorimeter
d) A phlogiston ambivalizer

(choose all that apply)

Linear Thermal Systems (Roger Stout)
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Back-of-the-Envelope Estimates
convection resistance of inner assembly o air space
NameofPart  Voume* dens  cp M Cth Suface area 00669 M2
w3 kgm's  JkgFC kg IC fim coefficent 13 Wim°2rC
Lower Block 27264 8900 383 242 927 Reonv 12 CW
Upper Block 37364 8900 383 332 1272
Upper OuterRing ~ 9.43E-5 8900 383 084 21 outside of chamber
Lower Outer Ring ~ 1.86E-4 8900 383 165 633 geomeny)
Bottom Cover Plate 3.45E-5 8900 383 031 118 oD 16inch 04084 m
total 95964 ol 854 3270 LD. 10inch 0254 m
height 16inch
T ol ticiness 0.125ich 0003175 m
Surface area
i top 01207 2
da 10 inch 0254 m = e
height 8 inch 02032 m e Tl
wall thickness 0125 inch 0003175 m e aRoTaR) i
lid/wall overlap 3 inch 00762 m = QN
sitfacelazal volume 000207 m'3
floor 00507 2 Steeldens 7850 kgim3
ceiling 00507 m~2 steel cp 460 JkglC
wall main 01621 mr2 mass
wall overlap 00608 2 10736 JrC
total 03851 mr2 total surface area of outside chamber
volume 000122 m3 0.7783027 M2
steeldens 7850  kgim3 film coefficient 32 Wim"2I°C.
steel cp 460 JkgiC 040 =
mass 960 kg
w15 arc conduction resistance of rock wool insulation
convection resistance of nside chamber walls thickness 00762 m
fim coefficient 13 Wim"2"C e 05212l
e 020 cw conductiviy 0,055 WimFC
R 27 cw

72 “— - 20143an 29
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Even More Back-of-the-Envelope
Calculations

* RC time constant of heater block assembly

= Rconvcth
=1.4-3300
=4600s

* RC time constant of outer walls of chamber

7= R Ciy

=0.23-15100
=3400s

e A - 2

Linear Thermal Systems (Roger Stout) [y ——— vﬂ

76 m - 201498020
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e Minimum ramp time step 45 °C
_ power 230 W

AE=C,AT ramp energy 147142 J

time = _AE ramp time 640 s

Thermal diffusion time  cu diffusivity 8.99E-3 s/mm~2

More Back-of-the-Envelope
(transient) Calculations

power

2 upper clamp 3 mm 0.08 s

time = L lower clamp 6 mm 032 s
a block thick 25 mm 56 s

block radius 75 mm 51s

Linear Thermal Systems (Roger Stou)

Commercial PID Controller

ammmin

Linear Thermal Systems (Roger Stout) - t‘

- m - 20143an 29

power 230 W
output % 20%

heater 200 °C
inside wall 144 °C
outside wall 39 °C
ambient 25 °C

Thermal Resistances

heater-inside  1.22 °C/W
inside-outside 2.28 °C/W
outside 0.30 *C/wW

total 3.80 °C/wW

Linear Thermal Systems (Roger Stou)
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St TR0 [ [ v i | iy i
] ) =11

sery it JE ] Ieesivies mummmm |

Lo e, LR

| this tells us our

. PID control also, the (natural) frequency
1 algorithm is way looks pretty poor for meeting
| underdamped 900 s “step” time spec

this slope tells us
s, (roughly) the C;, of
* the heater block

Linear Thermal Systems (Roger Stout)
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PID controller response Trial Run of Temperature Chamber

; (open loop, power constant in various steps)

i 2z 200 250
damped s o —zeta=0.15 180 [] —exp
frequency within [--zeta=l | 160 \\___ J—
1% of natural 140
frequency = %120 150 s

' e § 100 g
implies even o / \ / £ 100 &
critically damped | | / \ 6o
system won't on 40 w©
settle any faster * <" —! 0
than about 2n/e o - @ 0

0 20000 40000 60000 80000 100000 120000
° Time (sec)

Linear Thermal Systems (Roger Stout)

Linear Thermal Systems (Roger Stout)

Recall How to Handle Arbitrary Pulses Excel Mechanics of RC Fit
Four power steps decomposed into infinite steps 1. A Foster RC ladder network can be computed easily
in Excel with a single formula (and appropriate inputs)
Q
ismadeupof  ———* M; < 2. Choose a set number of points/decade (equal
ool 00y spacing on log scale)

3. Compute error at each time between model and

Temperature response constructed from measured curve

superposition of four single pulse responses)
4. Use Excel's “Solver” to minimum the root-mean-
squared error over the entire curve

e ) )
results in this 5. Choose constraints wisely

Linear Thermal Systems (Roger Stout) v Oy - 2002 Linear Thermal Systems (Roger Siout)
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Fitting RC Model to Step Experiment Data Very Simple (2-node) Thermal RC Model

200 250

180 [ —=—RC model

\_ =) -

160 \/ —power 200

140 Vv
o) \
S120 150
@
2 100 <
8
2 H
5 e 100 &
@

60

40 50

T =
20 ©  convection
resistance convection
0 0 resistance
0 20000 40000 60000 80000 100000 120000
Time (sec) ambient

Simple (3-node) Thermal RC Model RC Models Fit to Data

2-rung fit (RMSE = 0.000208)
Consider the simple

Foster Cauer i
Tau Amp C's R's C's RC products:
3850 0.31 12300 2.33 3740 8730
19600 3.65 5380 1.63 5320 8650
3-rung fit (RMSE = 0.000250)
Foster Cauer
Tau Amp C's R's C's
1880 0.002 855000 2.32 3740 8700
3880 0.31 12400 1.47 5100 7500
convection 19600 3.65 5390 0.17 12800 2200
1 N
e Comecton Cyinner heater assy = 3270 J/C
ambient Cy-inside walls of outer shell = 4400 J/C
= L Cy,-outside wall of outer shell = 10700 J/C

- 220 e Thema ysms oger Stow) . P - iz Liner T Syt (Roger St

2-Rung RC Simulation of Optimized Response Actual Open-Loop Chamber Response

2-rung simulation of optimized chamber temperature response to power input

180 A 0

/ e |
"

——setpoint ¥
S o —Power W] 10 . %
B g 1 B —usmmen
£ 120 T i [ —r
: et i ] o
# 100 w H p——
/ § [
80 3 —vsa
U7 H
I H
s / L 50 i

0
o 1000 2000 3000 4000 5000 6000 7000

Time (sec)
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Chamber Response / Power Input

——)

\\

Linear Thermal Systems (Roger Stout)

s

DUT Temperature Profile vs. Average V;

-\

chambertemperstur desc]

tmelsed

e |
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BONUS

If you're interested, and willing to spend
another 10-15 minutes ...

How to harness this math in Excel®

e |

Linear Thermal Systems (Roger Stout)

Array Formulas and Tables

« Array formulas tell Excel
— apply an operation over a range of cells
— produce output over (potentially) a range of cells
— (warning: array formulas applied to AND / OR may surprise you)
« Tables
— uses a single formula but applies it to a range of values
« With an array formula, you can compute the response of an
entire RC ladder in a single formula (for a given time)
« With a carefully designed layout, you can track the response
of a train of pulses, one cell for each pulse
* The SUM function can give you the cumulative response of
the entire ladder to all pulses (at a given time)
« With a TABLE, you can plot the time history of the whole thing

Linear Thermal Systems (Roger Stout)

Some Useful Array and Matrix Functions

SUM(arguments,...)
— sums all cells of arguments into single cell result
MMULT( argl(m x n), arg2(n x q) )
— computes matrix multiplication of argl by arg2; number of columns of
argl must number of rows of argl; result is (m x g) matrix

— if not entered as array formula, only (1,1) result is returned
MINVERSE (argument)

— computes inverse of argument, which must be square matrix
TRANSPOSE (argument)

— returns (n x m) matrix for (m x n) argument
SUMSQ(arguments,...)

— computes sum of squares of arguments into single cell result

Linear Thermal Systems (Roger Stout)
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Array Formulas and Matrix Functions Multiplying Blocks of Cells
| “51}1 i @ 810 - (- (AR D))
. A & [ € [ O [ — . “ . ,, AT B c [5] E F —
Array formulas l B matrix 3u2 matrix . |If you just mUltlply two 1 array 1 array 2
— Ctrl-Shift-Enter to create 1 q I all nl areas (arrays of cells), 2 E )
{ braces appear around the T 3 the size of the resultis || 2 o o [ o 5[ ¢
formula after entered } : : : L4 4 determined by the ;‘ j 13
* For example, MMULT 7 intersection of the inputs, || ¢ 5 1
- yellow area is one S — - and the individual cells |-} oL u
Lt)e:g:jllelz, but larger than =, are simply the products s arayl*arayz
beige area is same L of the corresponding 10 1 afansa
—_ . 11 E_ﬂ[l ANJA
formula, but only big m’pUt Va_luesj cell by cell. 12 HNS HNSD #NA
enough for subset of It's nothing like MMULT! |15 |anga anga anga
result 14 HNLS HNSD #NSA
15 HNSS BNIS #NSA
e

Multiple independent variables 3x3 theta matrix, 3x1 power vector Excel® math
junction power obtained by using  Malrix MULTiply
H . Ctrl-Shift-Enter rather multi-cell placement
temperature theta matrix assembled input {zarray formula notation} than ordinary Enter of array formula

vector

[T Microsoi Eucel - theta matris examples.sls

vector from simplified subsystems
A

theta power array reference array reference
matrix vector to theta matrix to power vector

u— + 20143an 29 Linear Thermal Systems (Roger Stout)

o8+ u— + 2014an 29 Linear Thermal Systems (Roger Stout)

7x3 theta matrix, 3x1 power vector Excel® math 7x3 theta matrix, 3x2 power vector Excel® math
theta matrix is no longer square — don't forget to use power “vector” is now a 3x2 array — . .
# of columns still must equal Ctrl-Shift-Enter formul each column is a different power the single MMULT array formula now occupies
# of rows of power vector to invoke array formula notation aray formuja now scenario, yet both are still processed 7 rows and 2 columns (one column for each

occupies 7 cells independent power scenario result)

using a single array (MMULT) formula

3 ~acrosolt Excel - theta matrin esamples.uls ol
- % .ﬂaz.l
ves e ~_@N
swwa/o-s-A-f fow o daeee n-n-A-J

el |

asu_2
ase 3

nardcent  _,
LII_I
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Using Unnamed and Named Input Values Using Table versus Individual Formulas
| o . « To create table, select || o -~ C A=)
AT B c i i A B © (1] E
1 TALE amplitudas formuls version entire b|Ue regIOn [ 1 Vs 1
| : “n“::: ; :‘:’:E o g — « Note |ight yellow Cel! 7 0.0001 1y mamed arguments
L ot 3 61 s06 can be a formula of its | o
5 01 4 05 __ 12333 05 12339 4
[ . B N — T | T own, or a referenceto |
| iimai i sau a formula somewhere E
8 ] 16,306 3 16,306 7
3 tablevenion e - I else (e.g. cell F4) -
o BT aerassand OFFSET - ® =M [Emplitudes®(1-L .
Al B € (0 T i  In this example, the =
I taus  amplitudes  formula version « i " i =0
R L - — column input cell” is -
3 0001 3| time  resporse time  response cell E4, because that's | 1 Duta Table
4 .ol 3] o] soed) a1 a0k . 13 =
s 0.1 o ORETE TR the variable argument = [e—— (=)
& 1 5 1 [ raumy | for the formula in F4 15 B Q /
7 & 2 15411 2 15411 . 1
16 O Cancel
L} E 16,306 1 16,306

. PRT—— P [ B O P—

Using Table versus Individual Formulas Putting it Together for a Sequence of Pulses
! - — @ u\nu—[.n—@ power data computed temperature evolution
& B (= [+ E 06
« Once table has been 1 taL‘alelludes  formulavraon Pouer seps
t d t th t 2 00001 1 non-nampd arguments — Z) lo]é Foster model — 05
Creae_ » note a £l 0001 i rime FESPONEE 005 1
selecting any 4 0.00 3 | aocd ) e s T e
individual cell below : o1 = S Laam z e I s
the column formula - " . AR o i “%
give you the same o 3 e it =niEE [ 0
] Balabis wrsrsinn 7 n.597 2 Y
{=TABLE(,E4)} 10 o G .
array formula a = ’ N—
13. g uo 0.05 01 015 02 0.25 “0
2 o5
14 Time (Sec)
15
16
L e Tl sy Roger S —— R e Tl Sy Roger S RN ||
Excel Mechanics of RC Fit A Note on Graphing the Power Steps
« With an array formula, you can compute the response of If you want the plot to look like steps, you have to create a special
an entire Foster RC ladder in a single formula (for a given version of the input data table, otherwise you get what looks like
time) ramps (even though it's correctly calculation step responses)

« With a carefully designed layout, you can track the
response of a train of pulses, one cell for each pulse

* The SUM function can give you the cumulative response 2
of the entire ladder to all pulses (at a given time) o o ] ]
» With a table, you can plot the time history of the whole o / s ||
thing £ =
« compute error at selected time points between model and A4 I T
measured curve , Mu o1 [\ |
« use Excel's “Solver” to minimum the root-mean-squared . ) ° 005 o1 015 02
error over the entire curve o o o1 ol oz om0z

Time (Sec)

wos- TSNy - 2014320 Linear Thermal Systems (Roger Stout) sor- SOy - 20143020 Linear Thermal Systems (Roger Stou)
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Orders of Magnitude and Rungs

« ltis a rare transient curve that cannot be followed
very accurately with time constants no closer than
about 1 order of magnitude apart. This means
that you need only about one rung per decade of
transient response.

Linear Thermal Systems (Roger Stout)
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Same Method Can be Applied to
Systems with Multiple Heat Sources

» Each heat source has its own Foster description
— of its own self heating
— of its interaction with every other location of interest

— different Foster descriptions don’t have to share common time
constants

— it's OK (in fact, it's virtually required) for interaction Foster
descriptions to have some negative amplitudes
* The “master” power input table has to introduce a new
“step” whenever any power input changes, whether you're
computing the temperature of that source or simply the
effect of that (and every) source in the system; unchanging
sources simply have a step of zero

-_ln.
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