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Chapter 4

Effect of Interchannel Interference on Receiver

Performance

In the previous two chapters we have assumed our systems to be ideal without any

interchannel interference. In this chapter we analyze the effects of interchannel

interference on the performance of the receiver. The model assumed is that of rectangular

spectra with spacing of channels less than channel width so that there is some overlap. It

is shown that some overlap in the system is acceptable and the performance of the system

in terms of throughput for a given total bandwidth improves until an optimum overlap

value.

4.1. Mathematical Formulation

4.1.1. Single-Sided Interference

It is assumed in this sub-section that there is only single-sided interchannel

interference present in the system. In the next sub-section we will consider interference

from both adjacent channels.

Initially, z(t) is assumed to be the received signal. z(t) is a zero mean Gaussian

process. This signal has two possibilities:

1 = data signal + noise + interchannel interference

0 = noise + interchannel interference

z(t)  can be divided in two parts:

)()()( tztztz ba +=     (4.1)
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with )(tza having a rectangular bandwidth 0B , and )(tzb  having a rectangular bandwidth

0kB . The parameter k is referred to as the channel overlap parameter, it represents the

overlapping percentage of an adjacent channel. It varies between 0 and 1, with 0

corresponding to no overlap and 1 corresponding to complete overlap.

Figure 4.1 illustrates a scenario where one channel is interfering with another.

With the aid of this figure we can obtain the mathematical definition of k. In this figure

B0 is the optical bandwidth and Rf  is the channel spacing. The overlap width is defined

as

RfB −= 0Bandwidth Overlap     (4.2)

As m is defined as the product of the optical bandwidth and the bit period, we can obtain

the following expression relating the Optical Bandwidth and the channel overlap

parameter:

TfBmk R )( 0 −=     (4.3)

By isolating k and using the definition of m, we obtain the following mathematical

expression for the channel overlap parameter:
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The energy of the received signal is given by:
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With the use of the Karhunen-Loeve expansion we can transform the integrals above into

series:
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To expand the third element of (4.5), we need to define )(tza and )(tzb as:
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where )(tiϕ and )(tjϕ are the eigenfunctions of components a an b. For rectangular

spectra it may be assumed that there are a finite number (equal to the time bandwidth

product) of non-zero eigenvalues all of which are equal [18].

Thus the third element of (4.5) becomes
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The energy of the received signal then assumes the following form:
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The above equation can be simplified into:
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It should be noted once again that the Karhunen-Loeve expansion has an infinite

number of terms. However, replacement by a finite sum of terms, all of which have the
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same variance, is a good approximation for the rectangular spectra case as indicated

previously in Chapter 3.

The first element of (4.11) represents signal, noise and interference, and the

second element represents signal and noise. The equation is valid for both the ON and

OFF cases. For the OFF-case it should be noted again that the data signal will be absent.

The moment generating function of the received signal z(t) in the ON state can be

represented as:
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As the variance of the interfering signal is the same as of the transmitted signal, we have
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By normalizing the equation above we get:
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For the OFF case the MGF is obtained in a similar fashion and is given by
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Substituting 2
iσ  by 2

sσ , and then normalizing, we get:
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4.1.2. Double-Sided Interference

Single-sided interchannel interference is only valid for a system which has two

channels or for the extreme channels of a system. Thus, for practical systems we have to

consider the effect of the interference of both adjacent channels.

The difference from the single-sided case is that instead of including only one

interfering signal in our calculations, we have to include now two, both having the same

variance. The calculations to obtain the energy of the received signal are done in the same

manner they were done in the previous sub-section. Thus, the MGF of the received signal

in the ON-state is given by
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As the variances of the interfering signals are the same as of the transmitted signal, we

have
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In a similar manner, the MGF for the OFF-state is obtain as
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which can be transformed into
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4.2. Evaluation of Interchannel Interference

Three different methods were used to evaluate the receiver performance with the

inclusion of the interchannel interference: 1) The Saddlepoint Approximation; 2) The
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Gaussian Approximation; and 3) The Chi-Square Approximation. Each of these methods

is described next. We initially use these methods for the single-sided interference case for

purposes of illustration and then extend these results for the double-sided interference

case.

4.2.1. Saddlepoint Approximation

The MGF for the ON state is given by equation (4.14). By using (2.9) and (2.10)

which were derived in Chapter 2, we get the MGF as:

( )[ ] ( )[ ] )1(22
)1(11211221)(

kmmk

ON skxksxsM
−−−

−+−+−=   (4.21)

By using the following auxiliary variables:
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To apply the saddlepoint approximation, we have to use the ’phase’ function

)(sONφ [22], which is described in Appendix A and is given by (A.8). Here, its

normalized version is given by

( ) ( ){ } sssss nn
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The first derivative of (4.23) is given by
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And the second derivative is given by
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When applying the saddlepoint approximation, the roots of )(sONφ ′ are needed. Solving

for the roots we obtain a third-order polynomial equation of the type

      023 =+++ ONONONON dscsbsa     (4.26)

where
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Equation (4.26) has three roots, two positives and one negative. In order to

calculate the BER, the negative root is taken. The reason why the negative root is taken is

that this root minimizes [23] the ’phase’ function given by (4.23) as verified by evaluating

the second derivative.

In a similar fashion to the ON-case, we can obtain the MGF for OFF-case as

( )[ ] [ ] )1(22
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By using the following auxiliary variables
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we get the normalized ’phase’ function )(sOFFφ as
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The first derivative of (4.28) is given by
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And the second derivative is
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When calculating the roots of )(sOFFφ ′  we obtain the following polynomial equation

023 =+++ OFFOFFOFFOFF dscsbsa   (4.31)

where
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This polynomial also has two positive roots and one negative root. The larger positive

root is taken in order to calculate the BER as it minimizes the ’phase’ function (4.28).

For fixed BERs of 610− and 910− , the optimum values of m and the receiver

sensitivity pN  were calculated for different values of the channel overlap k. The results

are shown in Figures 4.2 and 4.3.

As it can be seen from the figures, as expected the receiver sensitivity degrades as

the channel overlap increases. However, there is a performance improvement

independent of the BER when the channel overlap becomes greater than 80%. This slight

improvement might be a result of the reduced fluctuation of the interference

compensating for the increased interference.

In a similar manner, the saddlepoint approximation was used for the double-sided

interference case. It should be noted here that channel overlap only up to 0.5 was

considered, due to the fact that with an overlap of 0.5 there would be complete overlap,

50% overlap from each adjacent channel. The results are shown in Figures 4.4 and 4.5.

As it can be seen interchannel interference degrades receiver performance more

aggressively in the double-sided interference case.

4.2.2. Gaussian Approximation

The second method used to evaluate the effect of interchannel interference on the

receiver performance is the Gaussian Approximation. This method has already been

described and used for the case of no interchannel interference (k = 0) in Chapter 2.

The MGF for the ON-case is given by (4.12). To use the Gaussian Approximation

the first and second derivatives of the MGF have to be calculated in order to obtain the

mean and standard deviation.

Thus, we have:
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As the mean is given by )0(ONM ′ we have

2211 λλµ nnON +=   (4.34)

The variance which is given by (2.34) is

2
22

2
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2 λλσ nnON −−=   (4.35)

By replacing 2121  and ,,, λλnn  with their definitions the following equations for the mean

and standard deviation are obtained for the ON-case:
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By taking a similar approach in the OFF-case, the mean and standard deviation are

obtained as
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and
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With the use of the parameters calculated above, the BER can be calculated

according to equations (2.27) and (2.28). To analyze the receiver performance the BER

was fixed at 610− and 910− . The optimum values of m and the receiver sensitivity pN

were calculated for different values of the channel overlap k. These results are shown in

Figures 4.6 and 4.7.

For the double-sided interference case the procedure is the same. However,

equations (4.36) to (4.39) have to be changed to include the effects of two interfering

signals and not just one. The equivalent equations are given by
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The results obtained with the Gaussian Approximation for the double-sided interference

case are shown in Figures 4.8 and 4.9.

4.2.3. Chi-Square Approximation

The third and final method used to evaluate the effect of the interchannel

interference on the receiver performance is the chi-square approximation. The mean and
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variances, which were obtained in the previous section for the Gaussian Approximation,

were fitted into the MGF of a random variable with chi-square distribution. After

obtaining these new MGFs, the saddlepoint approximation was used to evaluate the

receiver performance. It should be noted that this case is similar to the analysis in [28] by

Arya and Jacobs with the difference being that while the Saddlepoint Approximation is

used here, Arya and Jacobs calculated the exact integrals. The agreement between the

Saddlepoint Approximation and the exact analysis has already been shown in Chapter 2.

For the ON-case, the MGF is of the following form

[ ] 12221)(
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ONµ  and 2
ONσ  are given by (4.36) and (4.37) respectively.

For the OFF-case, the MGF is of the form

[ ] 02221)(
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and OFFµ  and 2
OFFσ  are given be equations (4.38) and (4.39) respectively.

The procedure described above is valid for both the single and double-sided

interference cases. The only difference is the use of the different values of

22 and ,,, OFFOFFONON σµσµ  for each case.
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After obtaining these MGFs, the saddlepoint approximation was applied to obtain

an expression for the BER. For fixed BERs of 610− and 910−  the optimum values of m

and pN  were calculated for different values of k. These results are shown in Figures 4.10

to 4.13. As it can be seen there are slight variations in the slope of the curves for small

values of k. This can be explained as follows: in the region where k is relatively small (for

both single and double-sided interference cases), the curve is relatively flat, thus small

inaccuracies of the saddlepoint approximation can lead to these slope variations.

Figures 4.14 to 4.19 compare the results obtained with all the three methods

described for BERs of 610− and 910− . By analyzing these figures one important

conclusion can be made, when the interchannel interference is low, i.e., small filter

overlap, the results obtained with the Chi-Square Approximation are valid. However,

when channel overlap becomes large, the Chi-Square Approximation gives results that

are too optimistic and the performance approaches that calculated using the

Gaussian Approximation. This is valid for both the single-sided and double-sided

interference cases. Another point to notice is that as expected double-sided interchannel

interference degrades the system performance much more aggressively when compared

to single-sided interchannel interference.

In the next section it will be shown how interchannel interference affects the

transmission capacity of the system, and that it is possible to operate the system while

having some interchannel interference.

4.3. Tranmission Capacity

With the results obtained in section 4.2 regarding the effect of interchannel

interference on the values of m and Np, two important questions can be answered: How

does interchannel interference affect the total system transmission capacity and is it

desirable to operate the system with a certain amount of interchannel interference?

The total transmission capacity depends on the total available bandwidth, the

optimum value of m, and the channel overlap parameter. First, the definition of m has to

be considered [28]:
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where B0 is the optical bandwidth and Rb is the bit rate per channel.

The total number of channels available in the system is

R

c

f

B
channels =#   (4.49)

with Bc being the total available bandwidth and fR the channel spacing.

By using the definition of the channel overlap parameter given by equation (4.4),

the following expression can be obtained for channel spacing:

0)1( Bkf R −=    (4.50)

Substituting (4.50) and (4.48) into (4.49), the number of channels is obtained as a

function of channel overlap:
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As the transmission capacity is the product of the number of channels and the bit rate per

channel, the transmission capacity can be expressed as

)1( km
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For a total bandwidth of 35 nm (4.4 THz), the effect of interchannel interference

on the transmission capacity was evaluated when the system operated at the optimum m.

All three methods, the Saddlepoint Approximation, the Gaussian Approximation, and the

Chi-Square Approximation were used for fixed BERs of 10-6 and 10-9. We only evaluated
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the transmission capacity for the double-sided interference case as that is the one which

represents more closely a practical system. It would not have made sense if we had

evaluated the transmission capacity of a system with single-sided interference as that

system would only have two channels, which is not a realistic situation.

The results obtained are shown in Figures 4.20 and 4.21. As it can be seen the

Gaussian Approximation gives pessimistic results while the Chi-Square Approximation

gives results which are too optimistic. With the Saddlepoint Approximation for a BER of

10-9, the maximum transmission capacity is approximately 135 Gb/s. For a BER of 10-6

the maximum transmission capacity is approximately 220 Gb/s. Although, a higher BER

gives better results, a BER of 10-6 would not be acceptable in a system where a lot of data

is transmitted. Another point to notice in these results is that there is a slight improvement

in the transmission capacity when there is approximately 5% interchannel interference,

this is clearly shown when the Saddlepoint Approximation is applied. This is due to the

fact that more channels can be put inside the total available bandwidth when there is the

influence of interchannel interference, and 5% is the optimum point for the tradeoff

between the number of channels added and system performance.
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Fig 4.1 Illustration of interchannel interference.
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Fig 4.2 Influence of single-sided interchannel interference on Np and m for Pe=10-6

when calculated using the Saddlepoint Approximation
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Fig 4.3 Influence of single-sided interchannel interference on Np and m for Pe=10-9

when calculated using the Saddlepoint Approximation
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Fig 4.4 Influence of double-sided interchannel interference on Np and m for Pe=10-6

when calculated using the Saddlepoint Approximation
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Fig 4.5 Influence of double-sided interchannel interference on Np and m for Pe=10-9

when calculated using the Saddlepoint Approximation
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Fig 4.6 Influence of single-sided interchannel interference on Np and m for Pe=10-6

when calculated using the Gaussian Approximation
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Fig 4.7 Influence of single-sided interchannel interference on Np and m for Pe=10-9

when calculated using the Gaussian Approximation



Chapter 4: Effect of Interchannel Interference on Receiver Performance 70

Fig 4.8 Influence of double-sided interchannel interference on Np and m for Pe=10-6

when calculated using the Gaussian Approximation
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Fig 4.9 Influence of double-sided interchannel interference on Np and m for Pe=10-9

when calculated using the Gaussian Approximation
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Fig 4.10 Influence of single-sided interchannel interference on Np and m for Pe=10-6

when calculated using the Chi-Square Approximation
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Fig 4.11 Influence of single-sided interchannel interference on Np and m for Pe=10-9

when calculated using the Chi-Square Approximation
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Fig 4.12 Influence of double-sided interchannel interference on Np and m for Pe=10-6

when calculated using the Chi-Square Approximation
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Fig 4.13 Influence of double-sided interchannel interference on Np and m for Pe=10-9

when calculated using the Chi-Square Approximation



Chapter 4: Effect of Interchannel Interference on Receiver Performance 76

Fig 4.14 Comparison between Saddlepoint, Gaussian, and Chi-Square Approximation

regarding influence of channel overlap on Np and m for Pe=10-6 when single-sided

interchannel interference is considered
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Fig 4.15 Comparison between Saddlepoint, Gaussian, and Chi-Square Approximation

regarding influence of channel overlap on Np and m for Pe=10-9 when single-sided

interchannel interference is considered
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Fig 4.16 Comparison between Saddlepoint, Gaussian, and Chi-Square Approximation

regarding influence of channel overlap on Average Receiver Sensitivity for Pe=10-6 when

double-sided interchannel interference is considered.
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Fig 4.17 Comparison between Saddlepoint, Gaussian, and Chi-Square Approximation

regarding influence of channel overlap on m=B0T for Pe=10-6 when double-sided

interchannel interference is considered.
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Fig 4.18 Comparison between Saddlepoint, Gaussian, and Chi-Square Approximation

regarding influence of channel overlap on Average Receiver Sensitivity for Pe=10-9 when

double-sided interchannel interference is considered.
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Fig 4.19 Comparison between Saddlepoint, Gaussian, and Chi-Square Approximation

regarding influence of channel overlap on m=B0T for Pe=10-9 when double-sided

interchannel interference is considered.
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Fig 4.20 Comparison between Saddlepoint, Gaussian, and Chi-Square Approximation

regarding influence of channel overlap on system throughput for Pe=10-6 when double-

sided interchannel interference is considered.
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Fig 4.21 Comparison between Saddlepoint, Gaussian, and Chi-Square Approximation

regarding influence of channel overlap on system throughput for Pe=10-9 when double-

sided interchannel interference is considered.


