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ABSTRACT 

Modern fingerprint image compression and reconstruction 
standards used by the US Federal Bureau of Investigation (FBI) are 
based upon the popular 9/7 discrete wavelet transform. 
Multiresolution analysis tools have been successfully applied for 
fingerprint image compression for more than a decade; we propose 
a novel fingerprint image compression technique based on recently 
proposed wave atoms decomposition. Wave atoms decomposition 
has specifically been designed for enhanced representation of 
oscillatory patterns to convey temporal and spatial information. 
Our proposed compression scheme is based upon linear vector 
quantization of decomposed wave atoms representation of 
fingerprint images. Later quantized information is encoded with 
arithmetic entropy scheme. The proposed image compression 
standard outperforms the FBI fingerprint image compression 
standard, the wavelet scalar quantization (WSQ). Data mining, law 
enforcement, border security, and forensic applications can 
potentially benefit from our proposed compression scheme. 

Index Terms— Image compression, fingerprints, wave atoms, 
quantization, arithmetic coding

1. INTRODUCTION 

The fundamental goal of image compression is to obtain the best 
possible image quality at an allocated storage capacity. Law 
enforcement, border security and forensic applications are some 
crucial fields where fingerprint image compression plays an 
important role. Emergence of protocols and commercially available 
products has prompted police forces to use Automated Fingerprint 
Identification Systems (AFIS) during criminal investigations.  The 
Federal Bureau of Investigation deals with a massive collection of 
fingerprint database that contains more than 200 million cards and 
is growing at the rate of 30,000-50,000 new cards daily [1]. The 
archive consists of inked impressions on paper cards. A single card 
contains 14 different images: 10 rolled impression of each finger, 
duplicate (flat) impression of thumb and simultaneous impression 
of all fingers together. Fingerprint images are digitized at a 
resolution of 500 pixels per inch with 256 gray levels. Therefore a 
single fingerprint card requires approximately 10 MB of storage; 
the investigation of an efficient compression standard, that can 
significantly reduces the image size while retaining the minutiae 
(ridges, endings and bifurcations) information, is justified in 
conjunction with the size of FBI fingerprint database. In addition 
to the considerable savings in storage capacity, fingerprint image 

compression is also desired for effortless archiving and sweeping 
reduction in transmission bandwidth. 

FBI compression standard has incorporated the biorthogonal 
9/7 discrete wavelet transform (DWT) filter pair for highly reliable 
fingerprint compression and reconstruction since 1993. DWT was 
used due to its capability of space-frequency decomposition of 
images [2], energy compaction of low frequency sub-bands, and 
space localization of high frequency sub-bands. Image analysis 
using DWT is described using a pair of quadrature mirror filter 
(QMF) and a dual quadrature mirror filter (DQMF). QMF and 
DQMF are further decomposed into four sets of floating point 
coefficients: h0(Lo_D), g0(Hi_D), h1(Lo_R) and g1(Hi_D)  define 
the wavelet and scaling functions for each of forward DWT and 
inverse DWT respectively. Table 1 details the filter coefficients 
used for image decomposition and reconstruction.  

Table 1: Filter coefficients for 9/7 biorthogonal FBI compression 
standard.  

Filter Type Filter Coefficients 
h0 

(Lo_Dec) 
[0.03783 -0.02385 -0.11062 0.37740 0.85270 
0.37740 -0.11062 -0.02385 0.03783] 

g0 
(Hi_D) 

[0.06454 -0.04069 -0.41809 0.78849 -0.41809  
-0.04069 0.06454] 

h1 
(Lo_D) 

[-0.06454 -0.04069 0.41809 0.78849 0.41809   
-0.04069 -0.06454] 

g1 
(Hi_D) 

[0.03783 0.02385 -0.11062 -0.37740 0.85270   
-0.37740 -0.11062 0.02385 0.03783] 

Fingerprint images are decomposed using a 2D DWT which is 
applied using a separability approach along its rows and columns 
alternatively resulting into four smaller subsets. These subsets are 
further decomposed, quantized and coded using different coding 
techniques. Researchers have proposed various techniques for 
iterative decomposition such as FBI’s 64- subband [3] and Kasaei 
et al’s 73-Subband decomposition [4]. Entropy based best basis 
selection (EBBBS) algorithm [5] has also been proposed for 
improved sub-band decomposition. Recently proposed fingerprint 
image compression schemes use genetic algorithm [6-7] to evolve 
wavelet and scaling numbers for each level of decomposition. In 
this paper we propose a generic algorithm for fingerprint image 
compression using wave atoms decomposition. Extensive 
experiments are performed and our proposed method significantly 
outperforms the traditional WSQ FBI compression standard. 

The remainder of this paper is divided into 4 sections. Section 
2 discusses the wave atoms transform along with its 
implementation details. The proposed method for fingerprint image 
compression is described in section 3. Experimental results are 
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discussed in section 4 and section 5 details concluding remarks 
followed by acknowledgment and references. 

2. WAVE ATOMS DECOMPOSITION  

Fourier series decomposes a periodic function into a sum of simple 
oscillating functions, namely sines and cosines. In a Fourier series 
sparsity is destroyed due to discontinuities (Gibbs Phenomenon) 
and it requires a large number of terms to reconstruct a 
discontinuity precisely. Development of new mathematical and 
computational tools based on multiresolution analysis is a novel 
concept to overcome limitations of Fourier series. Many fields of 
contemporary science and technology benefit from multiscale, 
multiresolution analysis tools for maximum throughput, efficient 
resource utilization and accurate computations. Multiresolution 
tools render robust behavior to study information content of 
images and signals in the presence of noise and uncertainty.  

Wavelet transform is a well known multiresolution analysis 
tool capable of conveying accurate temporal and spatial 
information. Wavelet transform has been profusely used to address 
problems in data compression, pattern recognition, image 
reconstruction and computer vision. Wavelets better represent 
objects with point singularities in 1D and 2D space but fail to deal 
with singularities along curves in 2D. Discontinuities in 2D are 
spatially distributed which leads to extensive interaction between 
discontinuities and many terms of wavelet expansion. Therefore 
wavelet representation does not offer sufficient sparseness for 
image analysis. Following the introduction of wavelet transform, 
research community has witnessed intense efforts for development 
of ridgelets [8], contourlets [9], and curvelets [10]. These tools 
have better directional and decomposition capabilities than 
wavelets.  

Wave atoms are a recent addition to the collection of 
mathematical transforms for harmonic computational analysis. 
Wave atoms are a variant of 2D wavelet packets that retain an 
isotropic aspect ratio. Wave atoms have a sharp frequency 
localization that cannot be achieved using a filter bank based on 
wavelet packets and offer a significantly sparser expansion for 
oscillatory functions than wavelets, curvelets and Gabor atoms. 
Wave atoms capture coherence of pattern across and along 
oscillations whereas curvelets capture coherence only along 
oscillations. Wave atoms precisely interpolate between Gabor 
atoms [14] (constant support) and directional wavelets [15] 
(wavelength ~ diameter) in the sense that the period of oscillations 
of each wave packet (wavelength) is related to the size of essential 
support by the parabolic scaling i.e. wavelength ~ (diameter)2. 

Two distinct parameters , represent decomposition and 
directional ability and are sufficient for indexing all known forms 
of wave packet architectures namely wavelets, Gabor, ridgelets, 
curvelets and wave atoms. Wave atoms are defined for = =1/2 
and essential support of wave packet in space (left) and in 
frequency (right) is shown in Fig. 1.  indexes the multiscale 
nature of the transform, from = 0 (uniform) to  = 1 (dyadic). 
measures the wave packet’s directional selectivity  (0 and 1
indicate best  and poor selectivity respectively). Wave atoms 
represent a class of wavelet packets where directionality is 
sacrificed at the expense of preserving sparsity of oscillatory 
patterns under smooth diffeomorphisms.    

Fig. 1. Wave atoms tiling in space and frequency [12]. 

2.1. 1D discrete wave atoms  

Wave atoms are constructed from tensor products of adequately 
chosen 1D wave packets. Let )(, xj

nmψ represent a one-dimensional 

family of wave packets, where ,0, ≥mj  and n∈Z, centered in 
frequency around ,2, mj

mj πω ±=±  with jj CmC 22 21 ≤≤  and centered in 

space around nx j
nj

−=2,
. One-dimensional version of the parabolic 

scaling states that the support of each bump of )(ˆ , ωψ j
nm

is of length 

O(2j) while j,m=O(22j). Dyadic dilates and translates of 0ˆ mψ on the 
frequency axes are combined and basis function, written as:    
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If the function u is discretized at ,khxk = ,/1 Nh= Nk ....1= , then 
with a small truncation error (3) is modified as: 
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Since the data is supported inside two disjoint intervals of size 
2j+1 , symmetric about origin (2j+1 points) instead of an interval of 
length 2jx2  , sum(4) is computed using a reduced inverse FFT 
inside an interval of size 2j+1  centered about origin: 

     . )2(ˆ )2(ˆ
)2/2:12/2(2  2p
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A simple wrapping trick is used for the implementation of 
discrete wavelet packets and the steps involved are: 

1. Perform an FFT of size N  on the samples of )(ku . 

2. For each pair ),( mj , wrap the product uj
m ˆψ̂  by periodicity 

inside the interval [-2j , 2j ] and perform an inverse FFT of 
size 2j to obtain D

nmjc ,,
. 

3. Repeat step 2 for all pairs ),( mj . 
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The overall complexity of the algorithm is O(NLogN) and the 
wavelet packets are decomposed into positive and negative 
frequency components, represented by 

                  . )(ˆ)(ˆ)(ˆ ,,,,, ωψωψωψ j
nm

j
nm

j
nm −+ +=  (6)    

Hilbert transform j
nmH ,ψ of eq. (6) represents an orthonormal 

basis L2(R) and is obtained through a linear combination of 
positive and negative frequency bumps weighted by i and –i
respectively.  

              . )(ˆ)(ˆ)(ˆ ,,,,, ωψωψωψ j
nm

j
nm

j
nm iiH −+ +−=  (7) 

2.2. 2D discrete wave atoms  

A two-dimensional orthonormal basis function with 4 bumps in 
frequency plane is formed by individually taking products of 1D 
wave packets. Mathematical formulation and implementations for 
1D case are detailed in the previous section. 2D wave atoms are 
indexed by =(j,m,n), where m=(m1,m2) and n=(n1,n2). 
Construction is not a simple tensor product since there is only one 
scale subscript j. This is similar to the non-standard or multi-
resolution analysis wavelet bases where the point is to enforce 
same scale in both directions in order to retain an isotropic aspect 
ratio. Eq. (1) is modified in 2D as: 

. )2( )2(),( 22211121 nxnxxx jj
m

jj
m

−−+ −−= ψψϕμ       (8) 

The Fourier transform of (8) is separable and its dual orthonormal 
basis is defined by Hilbert transformed wavelet packets in (10). 
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Combination of (8) and (10) provides basis functions with two 
bumps in the frequency plane, symmetric with respect to the origin 
and thus directional wave packets oscillating in a single direction 
are generated.  

2
  ,

2
)2()1(

−+−+ −
=

+
= μμ

μ
μμ

μ
ϕϕ

ϕ
ϕϕ

ϕ   (11) 

)1(
μϕ  and )2(

μϕ together form the wave atoms frame and are jointly 

denoted by μϕ . Wave atoms algorithm is based on the apparent 

generalization of the 1D wrapping strategy to two dimensions and 
its complexity is O(N2LogN). 
  

3. PROPOSED IMAGE COMPRESSION STANDARD 

Wave atoms decomposition is used for sparse representation of 
fingerprint images since they belong to a category of images that 
oscillate smoothly in varying directions. Schematic block diagram 
of the proposed method is shown in Fig. 2. Discrete 2D wave 
atoms decomposition is applied on the original image in order to 
efficiently capture coherence of the fingerprint images along and 
across the oscillations. An orthonormal basis )(x+

μϕ  ( )1(
μϕ + )2(

μϕ ) is 

used instead of a tight frame since each basis function oscillates in 
two distinct directions instead of one. This orthobasis variant 

property is significantly important in applications where 
redundancy is undesired.  

Magnitudes of wave atoms decomposed coefficients, carrying 
low information content, are either zero or very close to zero hence 
these can be discarded without a substantial degradation in image 
quality. An appropriate global threshold is used to achieve desired 
transmission bit rate. After thresholding significance map matrix 
and a significant coefficient vector is generated. Significance map 
is a matrix of binary values that indicates the presence or absence 
of significant coefficient at specific location. The significance map 
is divided into non-overlapping blocks of 4x4. These non-
overlapping blocks of significance map are vectorized and 
quantized using a K-means vector quantization scheme with 64 
code words. Small blocks of data are used in order to minimize the 
error during vector quantization. The significant coefficients are 
quantized using a uniform scalar quantizer with 512 distinct levels. 

 Quantized significance map and significant coefficients are 
encoded using an arithmetic encoder. Arithmetic coding is a 
variable length entropy scheme that attempts to minimize number 
of bits by converting a string into another representation using 
more bits for infrequent characters and vice versa. As opposed to 
other entropy encoding techniques that convert the input message 
into component symbols and replace each symbol with a code 
word; arithmetic coding represents the entire message into a single 
number thereby achieving optimal entropy encoding.   

Fig. 2. Block diagram of proposed compression algorithm. 

4. RESULTS AND DISCUSSION 

Various fingerprint images used in FBI’s WSQ standard are 
compressed using the proposed method and substantial 
improvement in compression is achieved. The quality of various 
image compression techniques depends upon how close is the 
reconstructed image to the original image. Different metrics are 
proposed for investigating the quality of compression algorithms. 
Some methods investigate similarity while others explore the level 
of dissimilarity between reconstructed and the reference image. 
Mean square error (MSE) and peak signal to noise ratio (PSNR) 

Wave atoms 
decomposition

Hard threshold

Uniform scalar 
quantization 

Arithmetic 
entropy coding 

Arithmetic 
entropy coding 

Linear vector 
quantization 

Map Coefficients 

Compressed Image 
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are two celebrated metrics used to examine the qualitative 
performance. MSE is a distortion metric that provides a measure of 
dissimilarity between two images. MSE and PSNR are calculated 
using (12) and (13) respectively.  

             
= =

−=
R

i

C

j

jiXjiX
CR

MSE
1 1

2| , ),(),(
*
1   (12) 

                           , 255log10
2

10 MSE
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where R indicates the number of image rows and C refers to the 
number of columns, ) , (X represents the original image whereas 

) , (|X refers to the reconstructed image. 
Fig.3 demonstrates a sample fingerprint and the image 

reconstructed at 0.25 bits per pixel (bpp) using the proposed 
compression method. From Fig. 3 it is evident that the proposed 
method using wave atoms decomposition does an excellent job in 
preserving the fine details in a fingerprint image i.e. the minutiae 
(ridges ending and bifurcations) at lower bit rates. Table 2 
compares the PSNR obtained using our proposed method with the 
FBI’s WSQ compression standard at varying bitrates. As shown in 
Table 2 fingerprint compression based on wave atoms
decomposition produces a significant improvement in PSNR at 
high compression ratios (low bit rates) in comparison with FBI’s 
WSQ fingerprint compression standard.  

(a) (b) 

Fig. 3. (a) Original and (b) compressed image at 0.25 bpp. 

Table 2: Bit rate vs. PSNR for proposed method and FBI’s WSQ. 
Bit rate 

(bits per pixel) 
FBI’s WSQ [3] 

PSNR (db) 
Proposed method 

PSNR (db) 
0.1 23.72 28.62 
0.2 26.25 31.21 
0.3 27.96 31.68 
0.4 29.36 32.42 
0.5 30.37 32.65 

5. CONCLUSION 

Application of wave atoms based decomposition for fingerprint 
image compression results into a significant improvement in PSNR 
compared to FBI’s WSQ fingerprint compression standard. The 
improvements in PSNR are more pronounced and distinct at lower 
bit rates and validate the fact that wave atoms multiresolution 
analysis offers significantly sparser expansion, for oscillatory 
functions, than other fixed standard representations like wavelets, 
curvelets and Gabor atoms and captures coherence of pattern both 
across and along oscillations. Law enforcement, multimedia, and 

data mining related applications can benefit from our proposed 
compression scheme. 
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