

 PSoC® Creator™ Component Datasheet

Cypress Semiconductor Corporation • 198 Champion Court • San Jose, CA 95134-1709 • 408-943-2600

Document Number: 001-84994 Rev. *C Revised December 17, 2017

Features

▪ Programmable flicker-free dimming resolution from 2 to 32 bit

▪ Two pulse density outputs

▪ Programmable output signal density

▪ Serial output bit stream

▪ Continuous run mode

▪ User-configurable sequence start value

▪ Standard or custom polynomials provided for all sequence lengths

▪ Kill input disables pulse density outputs and forces them low

▪ Enable input provides synchronized operation with other components

▪ Reset input allows restart at sequence start value for synchronization with other components

▪ Terminal Count Output for 8-, 16-, 24-, and 32-bit sequence lengths.

General Description

The Precision Illumination Signal Modulation (PrISM) component uses a linear feedback shift
register (LFSR) to generate a pseudo random sequence. The sequence outputs a pseudo
random bit stream, as well as up to two user-adjustable pseudo random pulse densities. The
pulse densities may range from 0 to 100 percent.

The LFSR is of the Galois form (sometimes known as the modular form) and uses the provided
maximal length codes. The PrISM component runs continuously after it starts and as long as the
enable input is held high. The PrISM pseudo random number generator can be started with any
valid seed value, excluding 0.

When to Use a PrISM

The PrISM component provides modulation technology that significantly reduces low-frequency
flicker and radiated electromagnetic interference (EMI), which are common problems with high-

Precision Illumination Signal Modulation (PrISM)
2.20

Precision Illumination Signal Modulation (PrISM) PSoC® Creator™ Component Datasheet

Page 2 of 18 Document Number: 001-84994 Rev. *C

brightness LED designs. The PrISM is also useful in other applications that need this benefit,
such as motor controls and power supplies.

Input/Output Connections

This section describes the various input and output connections for PrISM. An asterisk (*) in the
list of I/Os indicates that the I/O may be hidden on the symbol under the conditions listed in the
description of that I/O.

clock – Input

The clock input defines the signal to compute the pseudo random sequence.

reset – Input

The reset input resets the pseudo random number to the start value at high state. This input is
valid for the started component only and provides synchronized operation with other
components.

kill – Input

The active-high kill input disables the PrISM pulse density outputs and sets them to 0 until kill is
released low.

enable – Input

The PrISM component runs after it starts and as long as the enable input is held high and reset
input is low. This input provides synchronized operation with other components.

pulse_den0/pulse_den1 – Outputs

Two pulse density outputs are available; both are derived from the same pseudo random
sequence. Each output is generated by comparing the desired pulse density value with the
current pseudo random number. If the pulse density type is configured as Less Than or Equal,
then the output is high while the pseudo random number is less than or equal to the pulse
density value. The second option is to set the pulse density type to Greater Than or Equal so
the output is high while the pseudo random number is greater than or equal to the pulse density
value.

bitstream – Output

The bitstream output continuously outputs the LSb of the LFSR.

PSoC® Creator™ Component Datasheet Precision Illumination Signal Modulation (PrISM)

Document Number: 001-84994 Rev. *C Page 3 of 18

tc – Output *

The terminal count output is available for 8-, 16-, 24-, and 32-bit length PrISM components. The
terminal count output goes high for one clock period each time the pseudo random number
equals 0xFF (8-bit), 0xFFFF (16-bit), 0xFFFFFF (24-bit), or 0xFFFFFFFF (32-bit), which occurs
once during each cycle of the pseudo random number generator.

Component Parameters

Drag a PrISM component onto your design and double-click it to open the Configure dialog box.

Figure 1. Configure Dialog Box

The PrISM component contains the following parameters:

Resolution

This parameter defines the PrISM maximal code length (period). The maximal code length is
(2Resolution – 1). Possible values include 2 to 32 bits. The maximal length code sets the length of
the pseudo random number generator and, therefore, the length of the sequence to be
generated. Longer sequences increase the pulse density resolution and lower the radiated EMI.
The maximal length codes listed in the following table are provided in the Galois form and
require no conversion before you use them in the PSoC 3 UDB ALU.

Precision Illumination Signal Modulation (PrISM) PSoC® Creator™ Component Datasheet

Page 4 of 18 Document Number: 001-84994 Rev. *C

Table 1. Maximal Code Lengths

Resolution LFSR Resolution LFSR Resolution LFSR

2 2, 1 13 13, 12, 10, 9 24 24, 23, 21, 20

3 3, 2 14 14, 13, 11, 9 25 25, 24, 23, 22

4 4, 3 15 15, 14, 13, 11 26 26, 25, 24, 20

5 5, 4, 3, 2 16 16, 14, 13, 11 27 27, 26, 25, 22

6 6, 5, 3, 2 17 17, 16, 15, 14 28 28, 27, 24, 22

7 7, 6, 5, 4 18 18, 17, 16, 13 29 29, 28, 27, 25

8 8, 6, 5, 4 19 19, 18, 17, 14 30 30, 29, 26, 24

9 9, 8, 6, 5 20 20, 19, 16, 14 31 31, 30, 29, 28

10 10, 9, 7, 6 21 21, 20, 19, 16 32 32, 30, 26, 25

11 11, 10, 9, 7 22 22, 19, 18, 17

12 12, 11, 8, 6 23 23, 22, 20, 18

To Set LFSR Coefficients Manually:

Define Resolution.

Select the Custom check box.

Enter coefficients separated by comma in the LFSR text box and press [Enter]. The Polynomial
Value is recalculated automatically.

The Polynomial Value is represented in hexadecimal format.

Note LFSR coefficient value cannot be greater than the Resolution value.

Polynomial Value

This parameter is represented in hexadecimal format. The correct polynomial is chosen based
on the Resolution selected. A custom polynomial can be specified.

Seed Value

This parameter, by default, is set to the maximum possible value (2Resolution – 1). This value can
be changed to any value except 0. The Seed value is represented in the hexadecimal form.

Note Changing the Resolution sets the Seed value to the default value.

PSoC® Creator™ Component Datasheet Precision Illumination Signal Modulation (PrISM)

Document Number: 001-84994 Rev. *C Page 5 of 18

Pulse Mode

These parameter values are chosen from combo boxes. Available values are from 1 to
2Resolution – 1 with a step 2Resolution. Pulse compare type can be set to Less Than or Equal or
Greater Than or Equal.

PulseType Hardcoded

The PulseType Hardcoded parameter saves resources (control register) when enabled, but
makes it impossible to change the Pulse Type using the PrISM_SetPulse0Mode() or
PrISM_SetPulse1Mode() APIs.

The PrISM_Stop() function is also not available if this parameter is enabled. To stop the PrISM in
this case, use the “enable” input.

Local Parameters (For API usage)

These parameters are used in the API and not shown in the Configure dialog.

▪ PolyValue(uint32) – Contains the polynomial value in hexadecimal format. The default is
0xB8h (LFSR= [8,6,5,4]).

▪ Density0(uint32) – Contains density0 value in hexadecimal format.

▪ Density1(uint32) – Contains density1 value in hexadecimal format.

▪ CompareType0(CompareType) – Contains Pulse Type for Density0, which may be Less
Than or Equal or Greater Than or Equal.

▪ CompareType1(CompareType) – Contains Pulse Type for Density1, which may be Less
Than or Equal or Greater Than or Equal.

Clock Selection

There is no internal clock in this component. You must attach a clock source. This component
operates from a single clock connected to the component.

Application Programming Interface

Application Programming Interface (API) routines allow configuration of the component using
software. The following table lists and describes the interface to each function. The subsequent
sections cover each function in more detail.

By default, PSoC Creator assigns the instance name “PrISM_1” to the first instance of a
component in a given design. You can rename the instance to any unique value that follows the
syntactic rules for identifiers. The instance name becomes the prefix of every global function

Precision Illumination Signal Modulation (PrISM) PSoC® Creator™ Component Datasheet

Page 6 of 18 Document Number: 001-84994 Rev. *C

name, variable, and constant symbol. For readability, the instance name used in the following
table is “PrISM.”

Table2. Function Interfaces

Function Description

PrISM_Start() The start function sets polynomial, seed, and pulse density
registers provided by the customizer.

PrISM_Stop() Stops PrISM computation.

PrISM_SetPulse0Mode() Sets the pulse density type for Density0.

PrISM_SetPulse1Mode() Sets the pulse density type for Density1.

PrISM_ReadSeed() Reads the PrISM Seed register.

PrISM_WriteSeed() Writes the PrISM Seed register with the start value.

PrISM_ReadPolynomial() Reads the PrISM Polynomial register.

PrISM_WritePolynomial() Writes the PrISM Polynomial register with the start value.

PrISM_ReadPulse0() Reads the PrISM Pulse Density0 value register.

PrISM_WritePulse0() Writes the PrISM Pulse Density0 value register with the
new Pulse Density value.

PrISM_ReadPulse1() Reads the PrISM Pulse Density1 value register.

PrISM_WritePulse1() Writes the PrISM Pulse Density1 value register with the
new Pulse Density value.

PrISM_Sleep() Stops and saves the user configuration.

PrISM_Wakeup() Restores and enables the user configuration

PrISM_Init() Initializes the default configuration provided with the
customizer.

PrISM_Enable() Enables the PrISM block operation.

PrISM_SaveConfig() Saves the current user configuration.

PrISM_RestoreConfig() Restores the current user configuration.

Table3. Global Variables

Variable Description

PrISM_initVar Indicates whether the PrISM has been initialized. The variable is initialized to 0 and set to 1 the
first time PrISM_Start() is called. This allows the component to restart without reinitialization
after the first call to the PrISM_Start() routine.

If reinitialization of the component is required, then the PrISM_Init() function can be called
before the PrISM_Start() or PrISM_Enable() functions.

PSoC® Creator™ Component Datasheet Precision Illumination Signal Modulation (PrISM)

Document Number: 001-84994 Rev. *C Page 7 of 18

void PrISM_Start(void)

Description: This is the preferred method to begin component operation. PrISM_Start() sets the initVar
variable, calls the PrISM_Init() function, and then calls the PrISM_Enable() function. The
start function sets polynomial, seed, and pulse density registers provided by the
customizer. PrISM computation starts on the rising edge of the input clock.

Parameters: None

Return Value: None

Side Effects: None

void PrISM_Stop(void)

Description: Stops PrISM computation. Outputs remain constant.

Parameters: None

Return Value: None

Side Effects: Valid only if the PulseType Hardcoded parameter is disabled.

void PrISM_SetPulse0Mode(uint8 pulse0Type)

Description: Sets the pulse density type for Density0. Less Than or Equal(<=) or Greater Than or
Equal(>=).

Parameters: uint8 pulse0Type: Selected pulse density type

Parameters Value Description

PrISM_LESSTHAN_OR_EQUAL The pulse_den0 output is high when the pseudo
random number is less than or equal to the
PulseDensity0 register value

PrISM_GREATERTHAN_OR_EQUAL The pulse_den0 output is high when the pseudo
random number is greater than or equal to the
PulseDensity0 register value

Return Value: None

Side Effects: Valid only if the PulseType Hardcoded parameter is disabled.

Precision Illumination Signal Modulation (PrISM) PSoC® Creator™ Component Datasheet

Page 8 of 18 Document Number: 001-84994 Rev. *C

void PrISM_SetPulse1Mode(uint8 pulse1Type)

Description: Sets the pulse density type for Density1. Less Than or Equal(<=) or Greater Than or
Equal(>=).

Parameters: uint8 pulse1Type: Selected pulse density type

Parameters Value Description

PrISM_LESSTHAN_OR_EQUAL The pulse_den1 output is high when the pseudo
random number is less than or equal to the
PulseDensity1 register value

PrISM_GREATERTHAN_OR_EQUAL The pulse_den1 output is high when the pseudo
random number is greater than or equal to the
PulseDensity1 register value

Return Value: None

Side Effects: Valid only if the PulseType Hardcoded parameter is disabled.

uint8/16/32 PrISM_ReadSeed(void)

Description: Reads the PrISM seed register.

Parameters: None

Return Value: uint8/16/32: Seed register value

Side Effects: None

void PrISM_WriteSeed(uint8/16/32 seed)

Description: Writes the PrISM seed register with the start value.

Parameters: uint8/16/32) seed: Seed register value

Return Value: None

Side Effects: None

uint8/16/32 PrISM_ReadPolynomial(void)

Description: Reads the PrISM polynomial.

Parameters: None

Return Value: uint8/16/32: Value of the polynomial

Side Effects: None

PSoC® Creator™ Component Datasheet Precision Illumination Signal Modulation (PrISM)

Document Number: 001-84994 Rev. *C Page 9 of 18

void PrISM_WritePolynomial(uint8/16/32 polynomial)

Description: Writes the PrISM polynomial.

Parameters: uint8/16/32 polynomial: Polynomial register value

Return Value: None

Side Effects: None

uint8/16/32 PrISM_ReadPulse0(void)

Description: Reads the PrISM PulseDensity0 value register.

Parameters: None

Return Value: uint8/16/32: PulseDensity0 register value

Side Effects: None

void PrISM_WritePulse0(uint8/16/32 pulseDensity0)

Description: Writes the PrISM Pulse Density0 value register with the new Pulse Density value.

Parameters: (unit8/16/32) pulseDensity0: Pulse Density value.

Return Value: None

Side Effects: None

uint8/16/32 PrISM_ReadPulse1(void)

Description: Reads the PrISM Pulse Density1 value register.

Parameters: None

Return Value: uint8/16/32: Pulse Density1 register value

Side Effects: None

void PrISM_WritePulse1(uint8/16/32 pulseDensity1)

Description: Writes the PrISM Pulse Density1 value register with the new Pulse Density value.

Parameters: uint8/16/32 pulseDensity1: Pulse Density value

Return Value: None

Side Effects: None

Precision Illumination Signal Modulation (PrISM) PSoC® Creator™ Component Datasheet

Page 10 of 18 Document Number: 001-84994 Rev. *C

void PrISM_Sleep(void)

Description: This is the preferred API to prepare the component for sleep. The PrISM_Sleep() API saves
the current component state. Then it calls the PrISM_Stop() function and calls
PrISM_SaveConfig() to save the hardware configuration.

Call the PrISM_Sleep() function before calling the CyPmSleep() or the CyPmHibernate()
function. Refer to the PSoC Creator System Reference Guide for more information about
power-management functions.

Parameters: None

Return Value: None

Side Effects: None

void PrISM_Wakeup(void)

Description: This is the preferred API to restore the component to the state when PrISM_Sleep() was
called. The PrISM_Wakeup() function calls the PrISM_RestoreConfig() function to restore
the configuration. If the component was enabled before the PrISM_Sleep() function was
called, the PrISM_Wakeup() function also re-enables the component.

Parameters: None

Return Value: None

Side Effects: Calling the PrISM_Wakeup() function without first calling the PrISM_Sleep() or
PrISM_SaveConfig() function may produce unexpected behavior.

void PrISM_Init(void)

Description: Initializes or restores the component according to the customizer Configure dialog settings.
It is not necessary to call PrISM_Init() because the PrISM_Start() API calls this function and
is the preferred method to begin the component operation.

Parameters: None

Return Value: None

Side Effects: All registers are set to values according to the customizer Configure dialog.

void PrISM_Enable(void)

Description: Activates the hardware and begins component operation. It is not necessary to call
PrISM_Enable() because the PrISM_Start() API calls this function, which is the preferred
method to begin the component operation.

Parameters: None

Return Value: None

Side Effects: None

PSoC® Creator™ Component Datasheet Precision Illumination Signal Modulation (PrISM)

Document Number: 001-84994 Rev. *C Page 11 of 18

void PrISM_SaveConfig(void)

Description: This function saves the component configuration and nonretention registers. It also saves
the current component parameter values, as defined in the Configure dialog or as modified
by appropriate APIs. This function is called by the PrISM_Sleep() function.

Parameters: None

Return Value: None

Side Effects: None

void PrISM_RestoreConfig(void)

Description: This function restores the component configuration and nonretention registers. It also
restores the component parameter values to what they were before calling the
PrISM_Sleep() function.

Parameters: None

Return Value: None

Side Effects: Calling this function without first calling the PrISM_Sleep() or PrISM_SaveConfig() function
may produce unexpected behavior.

MISRA Compliance
This section describes the MISRA-C:2004 compliance and deviations for the component. There
are two types of deviations defined: project deviations – deviations that are applicable for all
PSoC Creator components and specific deviations – deviations that are applicable only for this
component. This section provides information on component specific deviations. The project
deviations are described in the MISRA Compliance section of the System Reference Guide
along with information on the MISRA compliance verification environment.

The PrISM component does not have any specific deviations.

Sample Firmware Source Code

PSoC Creator provides numerous example projects that include schematics and example code
in the Find Example Project dialog. For component-specific examples, open the dialog from the
Component Catalog or an instance of the component in a schematic. For general examples,
open the dialog from the Start Page or File menu. As needed, use the Filter Options in the
dialog to narrow the list of projects available to select.

Refer to the “Find Example Project” topic in the PSoC Creator Help for more information.

Precision Illumination Signal Modulation (PrISM) PSoC® Creator™ Component Datasheet

Page 12 of 18 Document Number: 001-84994 Rev. *C

Functional Description

The PrISM component runs continuously after starting and as long as the “enable” input is kept
high. The PrISM pseudo random number generator may be started with any valid value
excluding 0. This allows multiple PrISM components to run out of phase of each other to further
reduce EMI. The “reset” input resets the pseudo random number to the start value. The active-
high “kill” input disables the PrISM pulse density outputs and sets them to 0 until kill is released
low. The “bitstream” output continuously outputs the LSb of the LFSR.

Two Pulse Density outputs are available; both are derived from the same pseudo random
sequence. Each output is generated by comparing the desired pulse density value with the
current pseudo random number.

The following timing diagram shows the PrISM output based on several pulse density ratios.

 Figure 2. Timing of PrISM Output

PSoC® Creator™ Component Datasheet Precision Illumination Signal Modulation (PrISM)

Document Number: 001-84994 Rev. *C Page 13 of 18

Block Diagram and Configuration

The PrISM is only available as a UDB configuration. The API is described above and the
registers are described here to define the overall implementation of the PrISM.

The implementation is described in the following block diagram.

Figure 3. PrISM Implementation

[2]

[1]

[0]

clock

cs_addr[2:0]

route_si

route_ci

f0_load

f1_load

d0_load

d1_load

PrISMdp

ce0

cl0

z0

ff0

ce1

cl1

z1

ff1

ov_msb

co_msb

cmsb

so

f0_bus_stat

f0_blk_stat

f1_bus_stat

f0_bus_stat

clock

1'b0 reset_reg
reset

enable

pulse_den0

pulse_den1

bitsream

tc

compare_type0

compare_type1

~reset

kill
~kill

ControlReg

control[0]

control[1]

control[2]

1'b0

1'b0

1'b0

1'b0

1'b0

1'b0
ctrl_enable

clock_in

clock_out

Udb Clock Enable

enable

clock

1'b1

clock_in

clock_out

Udb Clock Enable

enable

Q

Q
SET

CLR

D

Q

Q
SET

CLR

D

1b1

Q

Q
SET

CLR

D

Q

Q
SET

CLR

D

clock_cnt

clock_op

Top-Level Architecture

The 2- to 32-bit hardware PrISM component compares the output of a pseudo random counter
with a signal density value. The comparator output asserts when the count value is less than (or
greater than) or equal to the value in the Density value register.

Figure 4. PrISM Top-Level Architecture

P R S

D e n s ity 0 C m p

< =

> =

C m p

< =

> =
D e n s ity 1

p u ls e _ d e n 0

p u ls e _ d e n 1

b its tre a m

tcc lo c k

re s e t

e n a b le

k ill &

&

Precision Illumination Signal Modulation (PrISM) PSoC® Creator™ Component Datasheet

Page 14 of 18 Document Number: 001-84994 Rev. *C

Registers

PrISM_CONTROL

Bits 7 6 5 4 3 2 1 0

Value reserved compare
type1

compare
type0

ctrl enable

▪ ctrl enable: This bit enables generation of all internal signals described in the previous
sections. The value can be changed by the PrISM_Start() and PrISM_Stop() functions.

▪ compare type0: This bit performs compare type for the pulse_den0 output. The value of this
bit is determined by the choice made for the pulse compare type parameter in the component
Configure dialog. Also, the value can be changed by the PrISM_SetPulse0Mode() function.

▪ compare type1: This bit performs compare type for pulse_den1 output. The value of this bit is
determined by the choice made for the pulse compare type parameter in the component
Configure dialog. Also, the value can be changed by the PrISM_SetPulse1Mode() function.

The control register is not used if the PulseType Hardcoded option is selected.

PrISM_SEED

Bits 7 6 5 4 3 2 1 0

Value Seed

▪ Seed: Contains the initial Seed value and PRS residual value at the end of the computation.
The value of this register is determined by the Seed value parameter in the component
Configure dialog. Also, the value can be changed by the PrISM_WriteSeed() function and can
be read by PrISM_ReadSeed().

PrISM_SEED_COPY

Bits 7 6 5 4 3 2 1 0

Value Seed_Copy

▪ Seed_Copy: Contains the start Seed value for automatically loading PrISM_SEED register
when the “reset” input is active. The value of this register is determined by the Seed value
parameter in the component Configure dialog and automatically updates if the
PrISM_WriteSeed() function is called.

PSoC® Creator™ Component Datasheet Precision Illumination Signal Modulation (PrISM)

Document Number: 001-84994 Rev. *C Page 15 of 18

PrISM_POLYNOM

Bits 7 6 5 4 3 2 1 0

Value Polynomial

▪ Polynomial: The correct polynomial chosen based on the resolution selected. The value can
be changed by the PrISM_WritePolynomial() function and can be read by the
PrISM_ReadPolynomial() function.

PrISM_DENSITY0

Bits 7 6 5 4 3 2 1 0

Value Pulse density0

▪ Pulse density0 determines the value for the PrISM pulse_den0 output. The value of this
register is determined by the PulseDensity0 parameter in the Configure dialog. This value
can be changed by the PrISM_WritePulse0() function.

PrISM_DENSITY1

Bits 7 6 5 4 3 2 1 0

Value Pulse density1

▪ Pulse density1 determines the value for the PrISM pulse_den1 output. The value of this
register is determined by the PulseDensity1 parameter in the Configure dialog. This value
can be changed by the PrISM_WritePulse1() function.

References

Refer also to the PRS component datasheet.

Resources

The PrISM component is placed throughout the UDB array. The component utilizes the following
resources.

Precision Illumination Signal Modulation (PrISM) PSoC® Creator™ Component Datasheet

Page 16 of 18 Document Number: 001-84994 Rev. *C

Table 4. Resource Types

Configuration

Resource Type

Datapath
Cells

Macrocel
ls

Status
Cells

Control
Cells[1]

DMA
Channels

Interrupts

8-bit 1 4 – 1 – –

16-bit 2 4 – 1 – –

24-bit 3 4 – 1 – –

32-bit 4 4 – 1 – –

API Memory Usage

The component memory usage varies significantly, depending on the compiler, device, number
of APIs used and component configuration. The following table provides the memory usage for
all APIs available in the given component configuration.

The measurements have been done with the associated compiler configured in Release mode
with optimization set for Size. For a specific design, the map file generated by the compiler can
be analyzed to determine the memory usage.

Table 5. API Memory Resource Usage

Configuration

PSoC 3 (Keil_PK51) PSoC 4 (GCC) PSoC 5LP (GCC)

Flash

Bytes

SRAM

Bytes

Flash

Bytes

SRAM

Bytes

Flash

Bytes

SRAM

Bytes

8-bit 281 6 440 9 428 9

16-bit 428 9 456 9 444 9

24-bit 419 15 520 17 512 17

32-bit 421 15 456 17 432 17

DC and AC Electrical Characteristics

Specifications are valid for –40 °C ≤ TA ≤ 85 °C and TJ ≤ 100 °C, except where noted.
Specifications are valid for 1.71 V to 5.5 V, except where noted.

1. Control cells are not used if the PulseType Hardcoded parameter is checked.

PSoC® Creator™ Component Datasheet Precision Illumination Signal Modulation (PrISM)

Document Number: 001-84994 Rev. *C Page 17 of 18

Table 6. DC Characteristics

Parameter Description Min Typ[2] Max Units

IDD Component current consumption

8-bit – 15 – µA/MHz

16-bit – 22 – µA/MHz

24-bit – 28 – µA/MHz

32-bit – 35 – µA/MHz

Table 7. AC Characteristics

Parameter Description Min Typ Max[3] Units

fCLOCK Component clock frequency

8-bit 66 MHz

16-bit 55 MHz

24-bit 48 MHz

32-bit 40 MHz

2. Device IO and clock distribution current not included. The values are at 25 °C.

3. The values provide a maximum safe operating frequency of the component. The component may run at higher clock
frequencies, at which point validation of the timing requirements with STA results is necessary.

Precision Illumination Signal Modulation (PrISM) PSoC® Creator™ Component Datasheet

Page 18 of 18 Document Number: 001-84994 Rev. *C

Component Changes

This section lists the major changes in the component from the previous version.

Version Description of Changes Reason for Changes / Impact

2.20.c Minor datasheet edits.

2.20.b Minor datasheet edits.

2.20.a Updated datasheet with memory usage
for PSoC 4.

2.20 Added MISRA Compliance section. The component does not have any specific deviations.

2.10

Added all APIs with the CYREENTRANT
keyword when they are included in the
.cyre file.

Not all APIs are truly reentrant. Comments in the
component API source files indicate which functions are
candidates.

This change is required to eliminate compiler warnings for
functions that are not reentrant used in a safe way:
protected from concurrent calls by flags or Critical Sections.

Added support PSoC 5LP silicon.

2.0.a Minor datasheet edits and updates

2.0 Pulse Density outputs registered for
removing possible glitching.

Any combinatorial output can glitch, depending on
placement and delay between signals. To remove glitching,
the outputs should be registered.

Enable and reset inputs registered to
improve maximum speed operation.

These inputs had combinatorial usage, therefore were not
automatically registered by Creator and had violations.
Registering improves maximum speed and protects from
possible glitching.

Added characterization data to datasheet

Minor datasheet edits and updates

© Cypress Semiconductor Corporation, 2012-2017. This document is the property of Cypress Semiconductor Corporation and its subsidiaries, including Spansion LLC (“Cypress”). This
document, including any software or firmware included or referenced in this document (“Software”), is owned by Cypress under the intellectual property laws and treaties of the United States and
other countries worldwide. Cypress reserves all rights under such laws and treaties and does not, except as specifically stated in this paragraph, grant any license under its patents, copyrights,
trademarks, or other intellectual property rights. If the Software is not accompanied by a license agreement and you do not otherwise have a written agreement with Cypress governing the use
of the Software, then Cypress hereby grants you a personal, non-exclusive, nontransferable license (without the right to sublicense) (1) under its copyright rights in the Software (a) for Software
provided in source code form, to modify and reproduce the Software solely for use with Cypress hardware products, only internally within your organization, and (b) to distribute the Software in
binary code form externally to end users (either directly or indirectly through resellers and distributors), solely for use on Cypress hardware product units, and (2) under those claims of Cypress’s
patents that are infringed by the Software (as provided by Cypress, unmodified) to make, use, distribute, and import the Software solely for use with Cypress hardware products. Any other use,
reproduction, modification, translation, or compilation of the Software is prohibited.

TO THE EXTENT PERMITTED BY APPLICABLE LAW, CYPRESS MAKES NO WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, WITH REGARD TO THIS DOCUMENT OR ANY
SOFTWARE OR ACCOMPANYING HARDWARE, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
PURPOSE. To the extent permitted by applicable law, Cypress reserves the right to make changes to this document without further notice. Cypress does not assume any liability arising out of
the application or use of any product or circuit described in this document. Any information provided in this document, including any sample design information or programming code, is provided
only for reference purposes. It is the responsibility of the user of this document to properly design, program, and test the functionality and safety of any application made of this information and
any resulting product. Cypress products are not designed, intended, or authorized for use as critical components in systems designed or intended for the operation of weapons, weapons
systems, nuclear installations, life-support devices or systems, other medical devices or systems (including resuscitation equipment and surgical implants), pollution control or hazardous
substances management, or other uses where the failure of the device or system could cause personal injury, death, or property damage (“Unintended Uses”). A critical component is any
component of a device or system whose failure to perform can be reasonably expected to cause the failure of the device or system, or to affect its safety or effectiveness. Cypress is not liable, in
whole or in part, and you shall and hereby do release Cypress from any claim, damage, or other liability arising from or related to all Unintended Uses of Cypress products. You shall indemnify
and hold Cypress harmless from and against all claims, costs, damages, and other liabilities, including claims for personal injury or death, arising from or related to any Unintended Uses of
Cypress products.

Cypress, the Cypress logo, Spansion, the Spansion logo, and combinations thereof, WICED, PSoC, CapSense, EZ-USB, F-RAM, and Traveo are trademarks or registered trademarks of
Cypress in the United States and other countries. For a more complete list of Cypress trademarks, visit cypress.com. Other names and brands may be claimed as property of their respective
owners.

	Features
	General Description
	When to Use a PrISM

	Input/Output Connections
	clock – Input
	reset – Input
	kill – Input
	enable – Input
	pulse_den0/pulse_den1 – Outputs
	bitstream – Output
	tc – Output *

	Component Parameters
	Resolution
	To Set LFSR Coefficients Manually:

	Polynomial Value
	Seed Value
	Pulse Mode
	PulseType Hardcoded
	Local Parameters (For API usage)

	Clock Selection
	Application Programming Interface
	void PrISM_Start(void)
	void PrISM_Stop(void)
	void PrISM_SetPulse0Mode(uint8 pulse0Type)
	void PrISM_SetPulse1Mode(uint8 pulse1Type)
	uint8/16/32 PrISM_ReadSeed(void)
	void PrISM_WriteSeed(uint8/16/32 seed)
	uint8/16/32 PrISM_ReadPolynomial(void)
	void PrISM_WritePolynomial(uint8/16/32 polynomial)
	uint8/16/32 PrISM_ReadPulse0(void)
	void PrISM_WritePulse0(uint8/16/32 pulseDensity0)
	uint8/16/32 PrISM_ReadPulse1(void)
	void PrISM_WritePulse1(uint8/16/32 pulseDensity1)
	void PrISM_Sleep(void)
	void PrISM_Wakeup(void)
	void PrISM_Init(void)
	void PrISM_Enable(void)
	void PrISM_SaveConfig(void)
	void PrISM_RestoreConfig(void)

	MISRA Compliance
	Sample Firmware Source Code
	Functional Description
	Block Diagram and Configuration
	Top-Level Architecture

	Registers
	PrISM_CONTROL
	PrISM_SEED
	PrISM_SEED_COPY
	PrISM_POLYNOM
	PrISM_DENSITY0
	PrISM_DENSITY1

	References
	Resources
	API Memory Usage
	DC and AC Electrical Characteristics
	Component Changes

